2013 1(12)

Вернуться в содержание

   Краткая аннотация

 

Страницы:

410 - 419

Язык:

RU

Библ.:

63


Скачать статью:

2013_1(12)_72.pdf

 

 

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ СМЕРЧЕВОЙ ИНТЕНСИФИКАЦИИ ТЕПЛООБМЕНА В УЗКОМ КАНАЛЕ С ОВАЛЬНЫМИ ЛУНКАМИ НА НАГРЕТОЙ СТЕНКЕ ПРИ ПРОКАЧКЕ ВОДЫ

Исаев С.А.1, Леонтьев А.И.2, Гульцова М.Е.1, Чудновский Я.П.3

1 Санкт-Петербургский государственный университет гражданской авиации, Санкт-Петербург, Россия
2 Московский государственный технический университет им.Н.Э.Баумана, Москва, Россия
3 Институт газовых технологий, Дес Плейнс, США


Ссылка для цитирования:Citation:

Исаев С.А. Численное моделирование смерчевой интенсификации теплообмена в узком канале с овальными лунками на нагретой стенке при прокачке воды / С.А. Исаев, А.И. Леонтьев, М.Е. Гульцова, Я.П. Чудновский // Современная наука: исследования, идеи, результаты, технологии. - Днепропетровск: НПВК "Триакон". - 2013. - Вып. 1(12). - С. 410 - 419.


Ключевые слова:Keywords:

турбулентное течение; несжимаемая вязкая жидкость; узкий канал; лунка; расчет; RANS; MSST


Аннотация:Abstracts:

Анализируется генезис, состояние и перспективы вихревой интенсификации теплообмена (ВИТ) лунками. Важная роль в понимании генезиса и эволюции этого ВИТ отводится технологии, сложившимся в инженерной практике конструкторским решениям. Как результат, преобладающий интерес к сферической лунке с привязкой к диаметру пятна, в то время, как гидравлические потери зависят от соотношения размеров лунки и установки. Эволюция ВИТ тесно связана с анализом физического механизма генерации смерчеобразных структур в лунках и спиралевидных вихрей за ними. Обнаруженная связь перестройки двухъячеистой к моносмерчевой структуре в лунке со скачкообразным ростом теплоотдачи создала предпосылки для конструирования овальной лунки, состоящей из двух половинок сферической и цилиндрической вставки. Генерация смерчеобразной структуры в этом случае отличается высокой стабильностью и интенсивностью по сравнению со сферическим аналогом. Здесь представляются численные результаты ВИТ при прокачке воды в узком канале прямоугольного сечения с нанесенной на нагретую стенку (q=const) сферической и овальной лунок одной площади пятна. Показано, что происходящая с ростом относительного удлинения и глубины овальной лунки перестройка вторичного течения с формированием спиралевидного вихря сопровождается ростом теплоотдачи при умеренных гидравлических потерях. В заключение обсуждаются перспективы развития и исследования луночных технологий.


Литература:References:

  1. Dreitser G.A. Problems in developing highly efficient tubular heat exchangers // Thermal Engineering. 2006. - Vol.53. - No.4. - P. 279-287.

  2. Hagen R.L. Danak A.M. Heat transfer in the field of the turbulent boundary layer separation over a dimple // Heat Transfer. 1967. - No 4. - P. 62-69.

  3. Presser K.H. Empirische gleichungen zur berechnung der stoff - und warmeubertragung fur den spezialfal der abgerissenen stromung // Int. J Heat Mass Transfer. 1972. - Vol. 15. - P. 2447-2471.

  4. Hiwada M., Kawamura T., Mabuchi J. and Kumada M. Some characteristics of flow pattern and heat transfer past a circular cylinder cavity // Bull JSME. 1983. -Vol.26. -No.220. - P. 1744-1750.

  5. Snedeker S., Donaldson D.P. Observation of bistable flow in hemispherical cavity // AIAA Journal. 1966. - Vol.4. - P. 735-736.

  6. Gromov P.R., Zobnin A.B., Rabinovich M.I. and Sushchik M.M. Creation of solitary vortices in a flow around shallow spherical depressions // Soviet Technical Physical Letters. 1986. - Vol. 12. - No. 11. - P. 1323-1328.

  7. Kesarev V.S., Kozlov A.P. Convective heat transfer in turbulized flow past a hemispherical cavity // Heat Transfer Soviet. Research. 1993. - Vol. 25. - P. 156-160.

  8. Syred N., Khalatov A., Kozlov A., Shchukin A. and Agachev R. Effect of surface curvature on heat transfer and hydrodynamics within a single hemispherical dimple // ASME Journal of Turbomachinery. 2001. - Vol. 123. - P. 609-613.

  9. Kiknadze G.I., Gachechiladze I.A. and Gorodkov A.Yu. Self-organization of tornadolike jets in flows of gases and liquids and the technologies utilizing this phenomenon // Proceedings of 2009 ASME Summer Heat Transfer Conference. San Francisco California USA. 2009. HT 2009 - 88644. -14p.

  10. Ligrani P.M., Oliveira M.M. and Blaskovich T. Comparison of heat transfer augmentation techniques // AIAA Journal. 2003. - Vol. 41. - No. 3. - P. 337-362.

  11. Afanasyev V.N., Chudnovsky Y.P., Leontiev A.I. and Roganov P.S. Turbulent ow friction and heat transfer characteristics of spherical cavities on a plate // Experimental Thermal and Fluid Science. 1993. - Vol. 7. - P. 1-8.

  12. Chyu M.K., Yu Y. and Ding H. Heat transfer enhancement in rectangular channels with concavities // Enhancement Heat Transfer. 1999. -Vol.6. - P.429-439.

  13. Terekhov V.I., Kalinina S.V. and Mshvidobadze Yu.M. Heat transfer coefficient and aerodynamic resistance on a surface with a single dimple // Enhanced Heat Transfer. 1997. - Vol.4. - P. 131-145.

  14. Turnow J. Flow structure and heat transfer on dimpled surfaces. PhD Thesis. University of Rostock. 2011. - 151p

  15. Ligrani P.M., Harrison J.L., Mahmmod G.I. and Hill M.L. Flow structure due to dimple depressions on a channel surface // Phys. Fluids. 2001. - Vol.13. - No.11. - P. 3442- 3451.

  16. Mahmood G.I., Sabbagh M.Z. and Ligrani P.M. Heat transfer in a channel with dimples and protrusions on opposite walls // J. of Thermophysics and Heat Transfer. 2001. - Vol.15. - No. 3. - P. 275-283.

  17. Ligrani P.M., Mahmood G.I., Harrison J.L., Clayton C.M. and Nelson D.I. Flow structure and local Nusselt number variations in a channel with dimples and protrusions on opposite walls // Int.J. of Heat and Mass Transfer. 2001. - Vol. 45. - P. 2011-2020.

  18. Baranov P.A., Isaev S.A., Leontiev A.I., Mityakov A.V., Mityakov V.Yu. and Sapozhnikov S.Z. Experimental and numerical modeling of vortex heat transfer in turbulent flow past spherical dimple on a plane // Thermophysics and aeromechanics. 2002. - Vol.9. - No.4. - P. 497-508.

  19. Ekkad S.V., Nasir H. Dimple enhanced heat transfer in high aspect ratio channels // Journal of Enhanced Heat Transfer. 2003. - Vol. 10. - No. 4. - P. 395-405.

  20. Mahmood G.I., Ligrani P.M. Heat transfer in a dimpled channel combined influences of aspect ratio, temperature, Reynolds number and flow structure // Int.J. of Heat and Mass Transfer. 2004. - Vol. 45. - P. 2011-2020.

  21. Mityakov V.Yu., Mityakov A.V., Sapozhnikov S.Z. and Isaev S.A. Local heat fluxes on the surfaces of dimples. Ditches and cavities // Thermal Engineering. 2007. - Vol.54. - No.3. - P. 200-203.

  22. Isaev S.A., Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V., Mozhaiskii S.A. and Usachov A.E. Numerical analysis of the influence of the physical viscosity on the vortex heat transfer in laminar and turbulent flows around a heated plate with a shallow spherical hole // J. Engineering Physics and Thermophysics. 2009. - Vol.82. - No.5. - P. 847-857.

  23. Voskoboinik A.V., Voskoboinik V.A., Isaev S.A., Zhdanov V.L., Kornev N.V. and Turnow J. Bifurcation of vortex flow inside a spherical dimple in the narrow channel // Applied Hydromechanics. 2011. - Vol.13. - No.4. - P. 3-21 (in Russian).

  24. Chudnovskii Ja.P., Isaev S.A. and Kharchenko V.B. Calculation of a three-dimensional flow of a viscous incompressible liquid in the neighborhood of a shallow well on a flat surface // J. Engineering Physics and Thermophysics. 1994. - Vol.67. - No.5-6. - P. 1013-1017.

  25. Isaev S.A., Leontiev A.I., Frolov D.P. and Kharchenko V.B. Identification of selforganizing structures by the numerical simulation of laminar three-dimensional flow around a crater around on a plane by a flow of viscous incompressible fluid // Technical physics letters. 1998. - Vol.24. - No.3. - P. 209-211.

  26. Isaev S.A., Leontiev A.I. and Usachov A.E. Numerical study of the eddy mechanism of enhancement of heat and mass transfer near a surface with a cavity // J. Engineering Physics and Thermophysics. 1998. Vol.71. No.3. P. 481-487.

  27. Isaev S.A., Leontiev A.I. and Baranov P.A. Identification of self-organized vortexlike structures in numerically simulated turbulent flow of a viscous incompressible liquid streaming around a well on a plane // Technical physics letters. 2000. Vol.26. No.1. P. 15-18.

  28. Isaev S.A., Leontiev A.I., Baranov P.A. and Usachov A.E. Bifurcation of vortex turbulent flow and intensification of heat transfer in a hole // Doklady Physics. 2000. Vol.45. No.8. P. 389-391.

  29. Isaev S.A., Baranov P.A., Leontiev A.I. and Usachov A.E. Numerical investigation of tornado enhancement of heat and mass exchange processes in flow past projections in concave surfaces // Heat Transfer Research. 2002. Vol.33. No.1-2. P. 47-55.

  30. Isaev S.A., Leontiev A.I., Metov Kh.T. and Kharchenko V.B. Modeling of the influence of viscosity on the tornado heat exchange in turbulent flow around a small hole on the plane // J. Engineering Physics and Thermophysics. 2002. Vol.75. No.4. P. 890-898.

  31. Isaev S.A., Leontiev A.I., Baranov P.A. and Pyshnyi I.A. Numerical analysis of the influence of the depth of a spherical hole on a plane wall on turbulent heat transfer // J. Engineering Physics and Thermophysics. 2003. Vol. 76. No. 1. P. 61-69.

  32. Wang Z., Yeo K.S. and Khoo B.C. Numerical simulation of laminar channel flow over dimpled surface // AIAA Paper. 2003. No 3964. P. 1192-1202.

  33. Isaev S.A., Leontiev A.I., Kiknadze G.I., Kudryavtsev N.A. and Gachchiladze I.A. Comparative analysis of the vortex heat exchange in turbulent flows around a spherical hole and two-dimensional trench on plane wall // J. Engineering Physics and Thermophysics. 2005. Vol.78. No.4. P. 749-761.

  34. Isaev S.A., Pyshnyi I.A., Usachov A.E. and Kharchenko V.B. Verification of the multiblock computational technology in calculating laminar and turbulent flow around a spherical hole on a cannel wall // J. Engineering Physics and Thermophysics. 2002. Vol.75. No.5. P. 1155-1158.

  35. Isaev S.A., Leontiev A.I. Numerical simulation of vortex enhancement of heat transfer under condititions of turbulent floe past a dpherical dimple on the wall of a narrow channel // High Temperature. 2003. Vol.41. No.5. P. 665-679.

  36. Kornev N., Hassel E., Herwig H., Isaev S., Stephan P. and Zhdanov V. Enhancement of heat transfer from dimpled surfaces by the use of vortex induction // Engineering Research (Forschung im Ingenieurwesen). 2005. Vol.69. No.2. P. 90-100.

  37. Isaev S.A., Leontiev A.I., Zhdanov V.L., Kornev N.V. and Hassel E. Whirlwind-like enhancement of heat transfer on dimpled reliefs // Heat Transfer Research. 2008. Vol..39. No.1. P. 79-90.

  38. Isaev S.A., Kornev N.V., Leontiev A.I. and Hassel E. Influence of the Reynolds number and the spherical dimple depth on the turbulent heat transfer and hydraulic loss in a narrow channel // Int.J. Heat Mass Transfer. 2010. Vol.53. Issues 1-3. P. 178-197.

  39. Lin Y.-L., Shih T.I.-P. and Chyu M.K. Computations of flow and heat transfer in a channel with rows of hemispherical cavities // ASME Paper. 1999. 99-GT-263. 6p

  40. Isaev S.A., Leontiev A.I., Baranov P.A., Pyshnyi I.A. and Usachov A.E. Numerical analysis of the vortex intensification in a heat transfer in a channel with a set of deep spherical dimples on one of the walls // Doklady Physics. 2002. Vol.47. No.10. P. 755-757.

  41. Park J., Desam P.R. and Ligrani P.M. Numerical prediction of flow structure above a dimpled surface in a channel // Numerical Heat Transfer. 2004. Vol.45. Pt.A.P. 1-20.

  42. Won S.Y., Ligrani P.M. Numerical predictions of flow structure and local Nusselt number rations along and above dimpled surfaces with different dimple depths in a channel // Numerical Heat Transfer. 2004. Vol. 46. Part A.P. 549-570.

  43. Wei X.J., Joshi Y.K. and Ligrani P.M. Numerical simulation of laminar flow and heat transfer inside a microchannel with one dimpled surface // J. Electronic Packaging. 2007. Vol.127. P. 63-70.

  44. Hwang S.D., Kwon H.G. and Cho H.H. Heat transfer with dimple/protrusion arrays in a rectangular duct with a low Reynolds number range // Int.J. Heat and Fluid Flow. 2008. Vol.29. No.4. P. 916-926.

  45. Xiao N., Zhang Q., Ligrani P.M. and Mongia R. Thermal performance of dimpled surfaces in laminar flows // Int.J. Heat and Mass Transfer. 2009. Vol.52. No.7-8. P. 2009-2017.

  46. Gotovsky M., Isaev S. Heat transfer enhancement by artificial roughness at Reynolds numbers related with laminar and transitional regimes for high-viscous liquids // Proceedings of the 14 Int. Heat Transfer Conf. IHTC 14, IHTC 14-22303. 2010. 8p.

  47. Wang Z., Yeo K.S. and Khoo B.C. DNS of low Reynolds number turbulent flows in dimpled channels // Journal of Turbulence. 2006. Vol.7. No. 37. P. 1-31.

  48. Elyyan M.A. Heat transfer augmentation surfaces using modified dimples/protrusions. PhD Thesis. Virginia Polytechnic Institute and State University. 2008.181p.

  49. Chen Y., Chew Y.T. and Khoo B.C. Enhancement of heat transfer in turbulent channel flow over dimpled surface // International Journal of Heat and Mass Transfer. 2012. Vol.55. P. 8100-8121.

  50. Bunker R.S., Gotovskii M., Belen'kiy M. and Fokin B. Heat transfer and pressure loss for flows inside converging and diverging channels with surface concavity shape effects // Proceedings of the 4th International Conference Compact Heat Exchangers and Enhancement Technology, Paper 2003 GRC016. Crete Island, Greece. 2003. 14р.

  51. Park J., Ligrani P.M. Numerical prediction of heat transfer and fluid flow characteristics for seven different dimpled surfaces in a channel // Numerical Heat Transfer. 2005. vol.47. Part A.P. 1-24.

  52. Kim K.-Y., Choi J.-Y. Shape optimization of a dimpled channel to enhance turbulent heat transfer // Numerical Heat Transfer. 2005. vol.48. Part A.P. 901-915.

  53. Isaev S.A., Leontyev A.I. and Usachov A.Y. Methodological aspects of numerical modeling of vortex structures and heat transfer in viscous turbulent flows // Applied Energy: Russian Journal of Fuel, Power and Heat Systems. 1996. Vol.34. No.4. P. 110-117.

  54. Isaev S.A., Leontiev A.I., Baranov P.A., Metov Kh.T. and Usachov A.E. Numerical analysis of the effect of viscosity on the vortex dynamics at laminar separated flow past the dimple on a plane with allowance its asymmetry // J. Engineering Physics and Thermophysics. 2001. Vol.74. No.2. P. 339346.

  55. Isaev S.A., Leontiev A.I., Mitjakov A.V. and Pyshnyi I.A. Intensification of tornado-like heat transfer in asymmetric dimples // J. of Engineering Physics and Thermophysics. 2003. Vol. 76. P. 31-34.

  56. Isaev S.A., Leontiev A.I. and Baranov P.A. Simulation tornado-like enhancement of heat transfer for low-velocity motion of air in a rectangular channel with cavities. Part 1: Selection and justification of calculation methods // Thermal Engineering. 2007. Vol. 54 No. 3. P. 193-199.

  57. Isaev S.A., Leontiev A.I. and Baranov P.A. Simulation tornado-like enhancement of heat transfer for low-velocity motion of air in a rectangular channel with cavities. Part 2: Results of parametric studies // Thermal Engineering. 2007. Vol. 54. No. 8. P. 655-663.

  58. Kornev N., Turnow J., Hassel E., Isaev S. and Wurm F.-H. Fluid mechanics and heat transfer in a channel with spherical and oval dimples // Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 2010. Vol.110/ 2010. P. 231-237.

  59. Leontiev A., Isaev S., Kornev N., Chudnovsky Ja. and Hassel E. Numerical modeling and physical simulation of vortex heat transfer enhancement mechanisms over dimpled relief // Proceedings of the 14 Int. Heat Transfer Conf. IHTC 14, IHTC14-22334. 2010. 10p.

  60. Isaev S.A., Leontiev A.I. Problems of simulating tornado-like heat transfer turbulent flow past a dimpled relief on a narrow channel wall // J. Engineering Physics and Thermophysics. 2010. vol.83. No.4. P. 783793.

  61. Turnow J., Kornev N., Isaev S. and Hassel E. Vortex mechanism of heat transfer enhancement in a channel with spherical and oval dimples // Heat and Mass Transfer/ Waerme- und Stoffuebertragung. 2011. Vol. 41 Issue 3. P. 301-311.

  62. Isaev S.A., Leonardi E., Timchenko V. and Usachov A.E. Vortical investigation of heat transfer in microchannels with oval dimples // Heat Transfer Research. 2010. Vol. 41. No. 4. P. 413-424.

  63. Isaev S.A., Leontiev A.I., Zhukova Yu.V., Baranov P.A., Gotovskii M.A. and Usachov A.E. Numerical simulation of vortex heat transfer enhancement in transformer oil flow in a channel with one-row spherical dimples // Heat Transfer Research. 2011. Vol. 42. Issue 7. P. 613-628.

 

 
     

© НПВК "Триакон" 2009-2016