2016 1(17)

Back to table of content

   Short abstract

 

Pages:

89 - 99

Language:

RU

Ref.:

28


Click to get extended abstract


Download paper: [RU]

2016_1(17)_9.pdf

 

 

MULTI-NOZZLE COMBUSTION CHAMBER OF AVIATION GAS TURBINE ENGINES AS BASIS OF ENVIRONMENTAL SAFETY. REVIEW

doi:10.23877/MS.TS.25.009

Biryuk V.V., Gorshkalev A.A., Lukachev S.V., Tsybizov Yu.I.

Samara State Aerospace University, Samara, Russia


Citation:

Biryuk, V.V., Gorshkalev, A.A., Lukachev, S.V. and Tsybizov, Yu.I., (2016) Multi-nozzle combustion chamber of aviation gas turbine engines as basis of environmental safety. Review, Modern Science: Researches, Ideas, Results, Technologies, Iss. #1(17), PP. 89 - 99. doi: 10.23877/MS.TS.25.009.


Keywords:

combustion; emissions; aviation GTE; multi-nozzle low-emission combustion chamber; pollutions


Abstracts:

Environmental safety of aviation engines is very important problem for developers. The importance of this problem enlarges as the aviation engine thrust increases, because of increasing of thermodynamic parameters like temperature and pressure in combustion chamber. In this case, the temperature rise in the combustion zone results to formation of NOx. Using of multi-nozzle fuel burning mode in combustion chamber will allow decreasing of harmful substances formation significantly. Multi-nozzle combustion chambers of aviation gas turbine engines, which have been designed by JSC "Kuznetsov" (Samara city, Russian Federation) for a few last decades, comply with current requirements on emissions.
Comparative ecological characteristics of widespread aviation engines are presented in the article. Results of environmental testing procedures of low-emission multi-nozzle combustion chambers for aviation gas turbine engines are described. It is shown that multi-nozzle combustion chamber provides low NOx pollutant emissions and high reliability of aviation engine operation at different exploitation modes.


References:

  1. Solonin V.I., Tskhovrebov M.M., Lanshin A.I., i dr. Analiz tendentsy i prognozirovanie razvitiya dvigateley grazhdanskoy aviatsii". II-ya Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya // Aviadvigateli XXI veka". Sbornik tezisov t.1. Moskva. 2005. S. 60.

  2. Skibin V.A., Solonin V.N. Perspektivy i problemy razvitiya aviatsionnogo dvigatelestroeniya // Dvigatel. 1999. № 1. C.

  3. Lukachev S.V. Razvitie nauchnogo napravleniya "gorenie i rabochie protsessy kamer sgoraniya GTD" v KuAI-SGAU // Vestnik SGAU. Seriya: Protsessy goreniya, teploobmena i ekologiya teplovykh dvigateley. Vypusk 1. Samara 1998. S. 5.

  4. Orlov, M.Y., & Matveev, S.S. (2014). Numerical simulation application for the design and fine-tuning of small-sized gas turbine engine combustor. Open Mechanical Engineering Journal, 8, 450-456. Retrieved from www.scopus.com

  5. Matveev, S.S., Zubrilin, I.A., Orlov, M.Y., & Matveev, S.G. (2015). Numerical investigation of the influence of flow parameters nonuniformity at the diffuser inlet on characteristics of the GTE annular combustion chamber. Paper presented at the Proceedings of the ASME Turbo Expo, , 4A doi:10.1115/GT2015-42676

  6. Orlov, M.Y., & Matveev, S.S. (2014). Numerical simulation of an influence of a compressor and a turbine on characteristics of a combustion chamber of a small-sizes gas turbine engine. Life Science Journal, 11(11), 650-654. Retrieved from www.scopus.com

  7. Orlov, M.Y., Matveev, S.S., Makarov, N.S., & Zubrilin, I.A. (2014). Numerical modeling problems of operating process of combustion chambers of GTE and solution approaches. ARPN Journal of Engineering and Applied Sciences, 9(12), 2894-2899. Retrieved from www.scopus.com

  8. Ermakov, A.I., Shklovets, A.O., Popov, G.M., & Kolmakova, D.A. (2014). Investigation of the effect of the gas turbine compressor supports on gas flow circumferential nonuniformity. Research Journal of Applied Sciences, 9(10), 684-690. doi:10.3923/rjasci.2014.684.690

  9. Krivcov, A., Shabliy, L., & Baturin, O. (2014). Account the mutual influence of the simulation components of GTE. Paper presented at the ASME 2014 Gas Turbine India Conference, GTINDIA 2014, doi:10.1115/GTINDIA2014-8211

  10. Gritsenko E.A., Danilchenko V.P., Lukachev S.V., Kovylov Yu.L., Reznik V.E., Tsybizov Yu.I. Nekotorye voprosy proektirovaniya aviatsionnykh GTD. Samara: Izd-vo SNTs RAN. 2002. 527 s.

  11. Danilchenko V.P., Lukachev S.V., Kovylov Yu.L., Reznik V.E., Fedorchenko D.G., Tsybizov Yu.I. Proektirovanie aviatsionnykh gazoturbinnykh dvigateley. Samara: Izd-vo SNTs RAN. 2008. 619 s.

  12. Nikolaykin N.I., Smirnova Yu.V. Otsenka urovnya zagryazneniya atmosfery aviadvigatelyami s uchetom otnositelnoy negativnosti komponentov vybrosov // Nauchno-tekhnichesky kongress po dvigatelestroeniyu. 9-y Mezhdunarodnyy Salon "Dvigateli -2006" Moskva. 2006. Sb.dokladov.C.

  13. Varaksin A.Yu. Gidrogazodinamika i teplofizika dvukhfaznykh potokov: problemy i dostizheniya (obzor) // TVT. 2013. T. 51. № 3. S. 421.

  14. Varaksin A.Yu. Klasterizatsiya chastits v turbulentnykh i vikhrevykh dvukhfaznykh potokakh (obzor) // TVT. 2014. T. 52. № 5. pp. 777.

  15. Burtsev S.A., Leontyev A.I. Issledovanie vliyaniya dissipativnykh effektov na temperaturnuyu stratifikatsiyu v potokakh gaza (obzor) // TVT. 2014. T. 52. № 2. S. 310. DOI: 10.7868/S0040364413060069

  16. Dedesh V.T., Tenishev R.Kh., Leut A.P., i dr. Neobkhodimost razrabotki metodik letnykh issledovany uslovy obrazovaniya i sushchestvovaniya kondensatsionnykh sledov samoletov s GTD v kreyserskikh poletakh // Nauchno-tekhnichesky kongress po dvigatelestroeniyu. 9-y Mezhdunarodnyy Salon "Dvigateli -2006". Moskva. 2006. Sb.dokladov.C.

  17. Volkov S.A. Uzhestochenie Mezhdunarodnykh norm na emissiyu vrednykh veshchestv ot aviatsionnykh dvigateley i posledstviya dlya otechestvennykh razrabotchikov i ekspluatantov aviatsionnoy tekhniki // Nauchno-tekhnichesky kongress po dvigatelestroeniyu. 9-y Mezhdunarodnyy Salon "Dvigateli -2006". Moskva. 2006. Sb.dokladov.C.

  18. Biryuk V.V., Gorshkalev A.A., Kayukov S.S., Uglanov D.A. Gas-dynamic analysis of processes in a small-sizes two-stroke combustion engine // The Open Mechanical Engineering Journal, 2014, 8, P. 441.

  19. Kuznetsov N.D., Tokarev V.V., Ivanov Yu.A. Mnogoforsunochnaya kamera sgoraniya dvigateley "NK", kak prototip kamer sgoraniya perspektivnykh GTD // Trudy TsIAM №1229, 1987. c.

  20. Kuznetsov N.D., Tokarev V.V., Mnogogorelochnye kamery sgoraniya - odno iz perspektivnykh napravleny razvitiya dvigateley // Problemy mashinostroeniya i nadezhnosti mashin. 1995. №2, S.

  21. Biryuk V., Kayukov, S., Zvyagintsev, V., Lysenko, U. Ways of speed increase for internal combustion engine fuel injectors // Research Journal of Applied Sciences. 2014. Volume 9, Issue 11, P. 721.

  22. Aviatsiya i alternativnye vidy aviatsionnogo topliva. Rabochy dokument A37-WP/23. Monreal: IKAO, 2010, 5 s.

  23. Epeykin L.F., Kryzhanovsky A.I., Lavrov V.N., Spivak Yu.V., Tsybizov Yu.I. Rezultaty otrabotki mnogoforsunochnykh kamer sgoraniya aviatsionnykh GTD na alternativnykh vidakh topliva // Vestnik SGAU. Seriya: Protsessy goreniya, teploobmena i ekologiya teplovykh dvigateley. 1998. Vypusk 1. Samara 1998. S. 141.

  24. Lefebvre A.H., Ballal D.R. Gas Turbine Combustion Alternative Fuels and Emissions, CRC press, 2010, 537 p.

  25. Kuznetsov V.R., Sabelnikov V.A. Turbulentnost i gorenie.M.: Nauka, Fizmatlit, 1986, 287 c.

  26. Matveev S.G., Orlov M.Yu., Tsybizov Yu.I., Zubrilin I.A. Mnogoforsunochnaya maloemissionnaya kamera sgoraniya sovremennykh TRDD - tvorcheskoe nasledie N.D.Kuznetsova // Vestnik SGAU. 2014. №2. S. 17.

  27. Gritsenko E.A., Tsybizov Yu.I. Metodologiya sozdaniya maloemissionnykh kamer sgoraniya aviatsionnykh i konvertiruemykh dvigateley semeystva NK // Aktualnye problemy aviatsionnykh i aerokosmicheskikh sistem. Vyp.2(8). Kazan. Daytona Bich. 1999. s. 16.

  28. Saigakov E.A., Gorshkalev A.A., Kayukov S.S., Blagin E.V. Strength analysis of the internal combustion engine elements by using CAD/CAE-systems // Research Journal of Applied Sciences. 2014. Volume 9, Issue 10, P. 669.

 

 
     

© SPIC "Kappa", LLC 2009-2016