2016 1(17)

Back to table of content

   Short abstract

 

Pages:

68 - 77

Language:

RU

Ref.:

10


Click to get extended abstract


Download paper: [RU]

2016_1(17)_7.pdf

 

 

DEVELOPMENT AND RESEARCH OF TECHNOLOGIES OF THERMAL PROTECTION OF SURFACES STREAMLINED BY DISPERSE WORKING MEDIA

doi:10.23877/MS.TS.25.007

Kovalnogov V.N., Fedorov R.V., Khakhaleva L.V., Generalov D.A., Chukalin A.V.

Ульяновский государственный технический университет, Ulyanovsk, Russia


Citation:

Kovalnogov, V.N., Fedorov, R.V., Khakhaleva, L.V., Generalov, D.A. and Chukalin, A.V., (2016) Development and research of technologies of thermal protection of surfaces streamlined by disperse working media, Modern Science: Researches, Ideas, Results, Technologies, Iss. #1(17), PP. 68 - 77. doi: 10.23877/MS.TS.25.007.


Keywords:

numerical simulation; thermal protection; dispersed working body; turbine blades; cooling


Abstracts:

Results of development and numerical research of thermal protection of the surfaces streamlined by a disperse working fluid on the example of blades of turbomachines are given. The possibility of increase in accuracy of settlement forecasting of a thermal condition of blades due to obtain of reliable data by development of mathematical model and a unique complex of programs for modeling is shown. Opportunities and conditions of increase in efficiency of chilling of turbine blades by using damping cavities are researched.


References:

  1. Zaychik, L.I. Metody modelirovaniya turbulentnykh dispersnykh techeny. Statisticheskie modeli / L.I. Zaychik // Trudy Chetvertoy Rossyskoy natsionalnoy konferentsii po teploobmenu.T.1. - M.: Izd-vo MEI, 2006. - S. 54 - 59.

  2. Shvets, I.T. Vozdushnoe okhlazhdenie detaley gazovykh turbin / I. T Shvets, E.P. Dyban - K.: "Naukova dumka".1974. - 487 s.

  3. Eaton, J.K., Fessler J.R. Preferential concentration of particles by turbulence // Int.J. Multiphase Flow. - 1994. - Vol.20. - P. 169-209.

  4. Leontiev A.I., Lushchik V.G., Yakubenko A.E. A heat-insulated permeable wall with suction in a compressible gas flow // International Journal of Heat and Mass Transfer. 2009. V. 52. P. 4001-4007.

  5. Koval'nogov, N.N., Fedorov, R.V. Efficiency of a gas screen in the supersonic dispersed flow under conditions of inertial deposition of particles on a protected surface // Russian Aeronautics, 2011. Vol. 54. Issue 1, pp. 15-19.

  6. Kovalnogov V.N., Fedorov R.V. Numerical Analysis of the Efficiency of Film Cooling of Surface Streamlined by Supersonic Disperse Flow // AIP Conference Proceedings, 1648, 850031 (2015); http://dx.doi.org/10.1063/1.4913086

  7. Kovalnogov V.N., Fedorov R.V., and Generalov D.A. Modeling, Research and Development the Technology of Cooling of Turbine Engine Blades // AIP Conference Proceedings, 1648, 850032 (2015); http://dx.doi.org/10.1063/1.4913087

  8. Terekhov V.I., Pakhomov M.A. The numerical modeling of the tube turbulent gas-drop flow with phase changes // Int.J. Thermal Sci. -2004. - V. 43. - P. 595-610.

  9. Varaksin, A.Y. To question about fluctuated velocity and temperature of the non Stokesian particles moving in the turbulent flows // Heat Transfer 1998. Proc. of 11th Int. Heat Transfer Conf. Kyongju. Korea. - 1998. - Vol.2. - P. 147-150.

  10. Zaichik L.I., Alipchenkov V.M. Statistical models for predicting particle dispersion and preferential concentration in turbulent flows // Intern.J. Heat and Fluid Flow. 2005. V. 26. P. 416−430.

 

 
     

© SPIC "Kappa", LLC 2009-2016