2016 1(17)

Back to table of content

   Short abstract

 

Pages:

55 - 67

Language:

RU

Ref.:

19


Click to get extended abstract


Download paper: [RU]

2016_1(17)_6.pdf

 

 

EXPERIMENTAL INVESTIGATIONS OF THERMAL CONDUCTIVITY COEFFICIENT AND SPECIFIC HEAT CAPACITY OF COAL-WATER FUEL FROM COALS OF DIFFERENT METAMORPHIC STAGES

doi:10.23877/MS.TS.25.006

Pinchuk V.A.1, Sharabura T.A.1, Kuzmin A.V.2

1 National Metallurgical Academy of Ukraine (NMetAU), Dnepropetrovsk, Ukraine
2 Institute For Engineering Thermal Physics NAS of Ukraine, Kiev, Ukraine


Citation:

Pinchuk, V.A., Sharabura, T.A. and Kuzmin, A.V., (2016) Experimental investigations of thermal conductivity coefficient and specific heat capacity of coal-water fuel from coals of different metamorphic stages, Modern Science: Researches, Ideas, Results, Technologies, Iss. #1(17), PP. 55 - 67. doi: 10.23877/MS.TS.25.006.


Keywords:

coal; coal-water fuel; experiment; thermocouple; thermal conductivity; heat capacity; method of combining; metamorphic stage; comparison


Abstracts:

The paper is devoted to the study of thermal physical properties of coal-water fuel which was produced from high-ash coal or low-reactive coal. The thermal conductivity coefficient data of coal-water fuel were determined by using of combination of physical experiment and numerical modeling. It is shown, that thermal conductivity coefficient of coal-water fuel varies from 0.41 to 0.81 W/(m·K) and its value increases by temperature growth. Those values are significantly higher, than the same coefficient values of natural coal. The coefficient depends on the coal metamorphosis stage and amount of mineral impurities and water, contained in fuel. It was determined also that rising of mineral impurities share in coal to 10 % leads to increase the thermal conductivity coefficient value to 9…10 %. The increasing of water share in coal-water fuel can lead either to increase or to decrease value of thermal conductivity coefficient.
The heat capacity of coal-water fuel was investigated by using calorimetric method. It is found that heat capacity value of coal-water fuel varies from 3.5 to 6.5 kJ/(kg·K). The value is increasing on the rising of temperature and depends on mineral impurities and water shares in the fuel.
The dependencies of thermal conductivity coefficient and heat capacity value of coal-water fuel, which produced from coal of different metamorphosis stages, in relation to percentage shares of water and coal phases in fuel suspension and to the amount of mineral impurities, are obtained due to analysis of experimental data.


References:

  1. Maltsev L.I. Szhiganie kamennogo uglya v vide vodougolnoy suspenzii v kotlakh maloy moshchnosti / L.I. Maltsev, I.V. Kravchenko, S.I. Lazarev, D.A. Lapin // Teploenergetika. - 2014. - № 7. - P. 25 - 30.

  2. Delyagin G.N. Zhidkoe toplivo na osnove ugolnykh suspenziy: vozmozhnosti i perspektivy ispolzovaniya / G.N. Delyagin, Ya.M. Kagan, A.C. Kondratev // Rossiyskiy khimicheskiy zhurnal. - 1994. - № 3. - P. 22 - 27.

  3. Pinchuk, V.A., (2014) The influence of various physical and chemical parameters of coal-water fuel on the characteristics of its combustion process, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(15), PP. 78 - 84. doi: 10.23877/MS.TS.18.016.

  4. Sharabura, Т.А., Pinchuk, V.A. and Devčić, N., (2012). Ecological aspects of the thermal processing of water-coal fuel, Summaries of lectures of the 10th international symposium of Croatian Metallurgical Society SHMD ‘2012. In Materials and Metallurgy p. 429.

  5. Ulitin, M.V., Filippov, D.V. and Lukin, M.V., (2007) Physical-chemical properties, stability and coagulation of lyophobic disperse systems [Fiziko-khimicheskie svoystva, ustoychivost i koagulyatsiya liofobnykh dispersnykh sistem] TextBook, Ivanovo: Ivanovo State University of Chemistry and Technology, 108 pp.

  6. Popov, V.I., Kovalenko, Yu.A. and Borisov, A.A., (1995) Rheological and thermal physical properties of coal-water suspensions [Reologicheskie i teplofizicheskie svoystva vodougolnykh suspenzy], Teploenergetika, No.8, PP. 39 - 43.

  7. Agroskin, A.A., (1969) Chemistry and thechnology of coal [Khimiya i tekhnologiya uglya], Moscow: Nedra, 240 pp.

  8. Aronov, S.G. and Nesterenko, L.L., (1960) Solid fossil fuels chemistry [Khimiya tverdykh goryuchikh iskopaemykh], Kharkov: Publishing House of Kharkov University, 371 pp.

  9. Chemistry and processing of coal / V.G. Lipovich, G.A. Kalabin, I.V. Kalechits etc. - M.: Himiya, 1988. - 336 p.

  10. Agroskin, A.A., (1980) Thermal physic of solid fuel [Teplofizika tverdogo topliva], Moscow: Nedra, 256 pp.

  11. Pinchuk, V.A., (2014) Determination of the thermal conductivity coefficient of coal-water fuel by combination of physical experiment and numerical modeling methods [Opredelenie koeffitsienta teploprovodnosti vodougolnogo topliva metodom kombinirovaniya fizicheskogo eksperimenta i matematicheskogo modelirovaniya], Systemni tekhnolohiyi. Regional Interuniversity collection of scientific papers, - Dnepropetrovsk: DNVP "Systemni tekhnolohiyi", 3(92), PP. 66 - 76.

  12. Chirkin, V.S., (1957) Thermal conductivity of industrial materials [Teploprovodnost promyshlennykh materialov], Moscow: Mashinostroenie, 172 pp.

  13. Lykov, A.V., (1967) Theory of the thermal conductivity [Teoriya teploprovodnosti], Moscow: Vysshaya shkola, 599 pp.

  14. Moiseev, N.N., Ivanilov, Yu.P. and Stolyarova, E.M., (1978) Optimization methods [Metody optimizatsii]: TextBook, Moscow: Nauka, 351 pp.

  15. Chudnovsky, A.F., (1962) Thermal physical characteristics of dispersed materials [Teplofizicheskie kharakteristiki dispersnykh materialov], Moscow: Fizmatlit, 456 pp.

  16. Dulnev, G.N., Zarichnyak, Yu.P., (1974) Thermal conductivity of mixtures and composition materials [Teploprovodnost smesey i kompozitsionnykh materialov], Leningrad: Energiya, 264 pp.

  17. Preobrazhensky, V.P., (1978) Heat engineering measurements and instruments [Teplotekhnicheskie izmereniya i pribory], Moscow: Energiya, 704 pp.

  18. Grigoryev, V.A. and Zorin, V.M. Eds., (1983) Heat and mass transfer. Technical experiment [Teplo i massoobmen. Tekhnichesky eksperiment]. Handbook, Moscow: Energoatomizdat, 560 с.

  19. Gerashchenko, O.A., Gordov, A.N., Lakh, V.I., et al., (1984) Temperature measurements [Temperaturnye izmereniya]. Handbook, Kiev: Naukova dumka, 704 pp.

 

 
     

© SPIC "Kappa", LLC 2009-2016