2016 1(17)

Back to table of content

   Short abstract

 

Pages:

42 - 54

Language:

RU

Ref.:

25


Click to get extended abstract


Download paper: [RU]

2016_1(17)_5.pdf

 

 

DEVELOPMENT AND RESEARCH OF AN INTELECTUAL POWER SYSTEM FOR MICROCLIMATE CONTROL IN BUILDINGS

doi:10.23877/MS.TS.25.005

Kovalnogov V.N., Chamchiyan Yu.E.

Ульяновский государственный технический университет, Ulyanovsk, Russia


Citation:

Kovalnogov, V.N. and Chamchiyan, Yu.E., (2016) Development and research of an intelectual power system for microclimate control in buildings, Modern Science: Researches, Ideas, Results, Technologies, Iss. #1(17), PP. 42 - 54. doi: 10.23877/MS.TS.25.005.


Keywords:

heat transfer; simulation; energy efficiency; energy saving; heat balance; microclimate; automated control system; system analysis; polyvinylchloride window; temperature conditions


Abstracts:

The study covers a complex of issues related to systems analysis, modeling, research and development of efficient power systems to ensure building microclimate with PVC windows of increased tightness. The researchers provide an analysis of results of building energy-saving potential of the microclimate control systems. The study includes modeling and research of modes of ventilation and thermal control in the building with PVC windows of increased tightness using an original mathematical apparatus and software. It is shown that the real cost of thermal energy provided by the installation of PVC windows is reduced due to the latent heat loss associated with the growth of the ventilation load to ensure a comfortable microclimate. The research offers a way and conditions of the fullest realization of technical and economic benefits offered by PVC windows.


References:

  1. Rune K. Andersen, Valentina Fabi, Stefano P. Corgnati. Predicted and actual indoor environmental quality: Verification of occupants’ behaviour models in residential buildings // Energy and Buildings. Elsevier, Volume 127, 1 September 2016, Pages 105-115; http://dx.doi.org/10.1016/j.enbuild.2016.05.074.

  2. Alexandros Pantazaras, Siew Eang Lee, Mattheos Santamouris, Junjing Yang. Predicting the CO2 levels in buildings using deterministic and identified models // Energy and Buildings. Volume 127, 1 September 2016, Pages 774-785; http://dx.doi.org/10.1016/j.enbuild.2016.06.029.

  3. Maohui Luo, Xiang Zhou, Yingxin Zhu, Dongqian Zhang, Bin Cao. Exploring the dynamic process of human thermal adaptation: A study in teaching building // Energy and Buildings. Volume 127, 1 September 2016, Pages 425-432; http://dx.doi.org/10.1016/j.enbuild.2016.05.096.

  4. Anna Laura Pisello, Veronica Lucia Castaldo, John Eric Taylor, Franco Cotana. The impact of natural ventilation on building energy requirement at inter-building scale // Energy and Buildings. Volume 127, 1 September 2016, Pages 870-883; http://dx.doi.org/10.1016/j.enbuild.2016.06.023.

  5. Martin Thalfeldt, Jarek Kurnitski, Hendrik Voll. Detailed and simplified window model and opening effects on optimal window size and heating need // Energy and Buildings. Elsevier, Volume 127, 1 September 2016, Pages 242-251; http://dx.doi.org/10.1016/j.enbuild.2016.06.002.

  6. Hildebrando Cruz, João Carlos Viegas. On-site assessment of the discharge coefficient of open windows // Energy and Buildings. Volume 126, 15 August 2016, Pages 463-476; http://dx.doi.org/10.1016/j.enbuild.2016.05.051.

  7. A.J. Robinson. A thermal model for energy loss through walls behind radiators // Energy and Buildings. Elsevier, Volume 127, 1 September 2016, Pages 370-381; http://dx.doi.org/10.1016/j.enbuild.2016.05.086.

  8. Kovalnogov, N.N. Avtomatizirovannaya sistema optimalnogo upravleniya otopleniem uchebnogo zavedeniya / N.N. Kovalnogov, A.S. Rtishcheva, E.A. Tsynaeva // Izvestiya vuzov. Problemy energetiki, 2007. - № 3/4. - S. 140-147.

  9. Pazushkin, P.B. Osobennosti proektirovaniya sistem mikroklimata glavnogo uchebnogo korpusa UlGTU / P.B. Pazushkin, D.S. Kalashnikov, Yu.E. Chamchiyan // Novye tekhnologii v teplosnabzhenie i stroitelstve: Sbornik rabot aspirantov i studentov - sotrudnikov NIL "Teploenergeticheskie sistemy i ustanovki". - Vypusk 7. - Ulyyanovsk: UlGTU, 2009. - S. 323-333.

  10. Kovalnogov V.N. Sistemnyy analiz, modelirovanie i issledovanie effektivnosti energeticheskikh sistem obespecheniya mikroklimata gorodskikh zdany / Kovalnogov V.N., Chamchiyan Yu.E. // Trudy Akademenergo, 2014. - № 2. - S. 87-95.

  11. Vargaftik N.B. Spravochnik po teplofizicheskim svoystvam gazov i zhidkostey.M.: Nauka, 1972. 721 s.

  12. Mukhachev G.A., Shchukin V.K. Termodinamika i teploperedacha.M.: Vysshaya shkola, 1991. 480 s.

  13. Kovalnogov N.N. Pogranichnyy sloy v potokakh s intensivnymi vozdeystviyami. Ulyyanovsk: UlGTU, 1996. 246 c.

  14. Kovalnogov, N.N. Teplovaya model glavnogo uchebnogo korpusa UlGTU, oborudovannogo sistemoy optimizatsii teplopotrebleniya / N.N. Kovalnogov, V.N. Kovalnogov, A.S.Rtishcheva, A.N. Afonin // Kontinualnye algebraicheskie logiki, ischisleniya i neyroinformatika v nauke i tekhnike: tr. mezhdunar. konf.- Ulyyanovsk: UlGTU, 2004. - T. 7. - S. 102-106.

  15. Vladislav N. Kovalnogov, Yuri E. Chamchiyan and Dmitry V. Suranov. Modeling, research and development of the system for optimal heat consumption of a building // AIP Conference Proceedings, 1648, 850031 (2016); http://dx.doi.org/10.1063/1.4952242

  16. Raschet teplovogo sostoyaniya zdaniya vysshego uchebnogo zavedeniya: program. produkt: № 6006 / Kovalnogov N.N., Kovalnogov V.N., Rtishcheva A.S.; Ulyyan. gos. tekhn. un-t. - InFR № 50200600553, reg. 26.04.2006.

  17. Rtishcheva, A.S. Issledovanie teploizolyatsionnykh svoystv ograzhdayushchikh konstruktsy zdaniya // Trudy VI Shkoly-seminara molodykh uchenykh i spetsialistov akademika RAN V.E. Alemasova "Problemy teplomassoobmena i gidrodinamiki v energomashinostroenii", 16-18 sentyabrya. Kazan, 2008. - S.423-425.

  18. Rtishcheva A.S., Chamchiyan Yu.E. Chislennoe issledovanie ekonomii teplovoy energii v zdaniyakh v usloviyakh upravleniya ventilyatsiey // AKTUALNYE PROBLEMY ENERGETIKI APK/ Materialy V Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Pod redaktsiey V.A. Trushkina. Saratov, 2014. - S. 271-272.

  19. Kovalnogov V.N., Rtishcheva A.S., Chamchiyan Yu.E. Modelirovanie i issledovanie vliyaniya okon povyshennoy germetichnosti na energosberezhenie i teplovoy balans zdaniya // Tezisy dokladov i soobshcheny. Nauchnoe izdanie XIV Minskogo mezhdunarodnogo foruma po teplo- i massoobmenu 10-13 sentyabrya 2012 g. V 2-kh tomakh. - Minsk: Institut teplo- i mossoobmena im.A.V. Lykova, 2012. T. 2. Ch. 1. - S. 289-291

  20. SNiP 2.04.05-91. Otoplenie, ventilyatsiya i konditsionirovanie.M.: 1997.

  21. SNiP 23-01-99. Stroitelnaya klimatologiya.M.: 1999.

  22. SNiP II-3-79. Stroitelnaya teplotekhnika.M.: 1998.

  23. Соколов Е.Я. Теплофикация и тепловые сети / Е.Я. Соколов. - М.: Издательство МЭИ, 2001. - 472 с.

  24. Apartsev M.M. Naladka vodyanykh sistem tsentralizovannogo teplosnabzheniya.M.: Energoatomizdat. 1983.

  25. Programmno-informatsionnyy kompleks dlya rascheta mikroklimata zdaniya s oknami povyshshchennoy germetichnosti: program. produkt: № 2014661475 / Kovalnogov V.N., Chamchiyan Yu.E., Fedorov R.V.; Ulyyan. gos. tekhn. un-t., reg. 30.10.2014.

 

 
     

© SPIC "Kappa", LLC 2009-2016