2015 1(16)

Back to table of content

   Short abstract

 

Pages:

133 - 138

Language:

RU

Ref.:

10


Click to get extended abstract


Download paper: [RU]

2015_1(16)_25.pdf

 

 

NUMERICAL SIMULATION OF TWO-PHASE FLOW BY VOF METHODS, WITH THE DYNAMIC CONTACT ANGLE

Shebeleva A.A.1, Minakov A.V.1,2

1 Siberian Federal University, Krasnoyarsk, Russia
2 Institute of Thermophysics SB RAS, Novosibirsk, Russia


Citation:

Shebeleva, A.A. and Minakov, A.V., (2015) Numerical simulation of two-phase flow by VOF methods, with the dynamic contact angle, Modern Science: Researches, Ideas, Results, Technologies, Iss. #1(16), PP. 133 - 138.


Keywords:

microchannel; VOF method; two-component flow; dynamic contact angle


Abstracts:

Results of testing methodology for calculating two-phase flows based on the method of fluid in the cells (VOF method), and the procedure for CSF accounting of surface tension forces in the microchannel are considered in the work. Mathematical modeling of two-component flow fluid -fluid in the T- microchannel conducted using this methodology. The following flow regimes studied slug flow, rivulet flow, parallel flow, dispersed (droplet) flow, plug flow. Comparison of numerical results with experimental data done. Satisfactory agreement between the calculated values with the experimental data obtained


References:

  1. Rudyak V., Minakov A. Modeling and Optimization of Y-Type Micromixers // Micromachines. - 2014. - Vol. 5. - N 4. - P. 886 - 912.

  2. Guzei D.V., Minakov A.V., Pryazhnikov M.I., Dekterev A.A. Numerical modeling of gasliquid flows in mini- and microchannels // Thermophysics and Aeromechanics. - 2015. - Vol. 22. - N 1. - P. 61 - 71.

  3. Minakov A.V. Numerical algorithm for moving boundary fluid dynamics problems and its testing // Computational Mathematics and Mathematical Physics. - 2014. - Vol. 54. - N 10. - P. 1560 -- 1570.

  4. Minakov A.V. Chislennyy algoritm resheniya prostranstvennykh zadach gidrodinamiki c podvizhnymi tverdymi telami i svobodnoy poverkhnostyu // Sibirskiy zhurnal industrialnoy matematiki. - 2008. - N 4 (36). - S. 95 - 105.

  5. Brackbill J.U., Kothe D.B., Zemach C.A. A continuum method for modeling surface tension // J. Comput. Phys. - 1992. - P. 335.

  6. Gavrilov A.A., Minakov A.V., Dekterev A.A., Rudyak V.Y. A numerical algorithm for modeling laminar flows in an annular channel with eccentricity // J. Appl. Ind. Math. - 2011. - N 5. - P. 559 - 568

  7. Bayer I.S, Megaridis C.M. Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics // J. Fluid Mechanics. - 2006. - Vol. 558. - P. 415 - 449.

  8. Hocking L. On the contact angels in evaporating liquids // Phys. Fluids. - 1995. - Vol.7. - P. 2950 -2955.

  9. Minakov A.V., Rudyak V.Y., Gavrilov A.A., Dekterev A.A. Mixing in a T-shaped micromixer at moderate Reynolds numbers // Thermophys. Aeromech. - 2012. - N 19. - P. 385 - 395.

  10. Minakov А., Yagodnitsina A., Lobasov A., Rudyak V., Bilsky A. Study of fluid flow in micromixer with symmetrical and asymmetrical inlet conditions // La Houille Blanche. - 2013. - N 5. - P. 12 - 21.

 

 
     

© SPIC "Kappa", LLC 2009-2016