2014 1(14)

Back to table of content

   Short abstract

 

Pages:

17 - 22

Language:

RU

Ref.:

7


Click to get extended abstract


Download paper: [RU]

2014_1(14)_3.pdf

 

 

CONTROL OF SELF-INDUCED SHOCK WAVE OSCILATIONS ON AIRFOIL AT THE TRANSONIC REGIME THE FLOW

Prikhodko A.A.1,2, Polevoy O.B.2, Lipatov I.I.3

1 Oles Honchar Dnepropetrovsk National University, Dnepropetrovsk, Ukraine
2 Institute of Transport Systems and Technologies NAS of Ukraine, Dnepropetrovsk, Ukraine
3 Central Aerohydrodynamic Institute, Zhukovskiy, Russia


Citation:

Prikhodko, A.A., Polevoy, O.B. and Lipatov, I.I., (2014) Control of self-induced shock wave oscilations on airfoil at the transonic regime the flow, Modern Science: Researches, Ideas, Results, Technologies, Iss. #1(14), PP. 17 - 22.


Keywords:

transonic flows; self-sustained shock oscillations; airfoil; Reynolds-averaged Navier-Stokes equations; turbulence model; flow separation control


Abstracts:

The paper aim is the investigation of insufficiently known stationary and non-stationary processes of viscous-inviscid interaction in transonic flows. Reynolds-averaged Navier-Stokes equations closed with Spalart-Allmaras differential turbulence model are applied to investigate numerically the steady and unsteady separated transonic flows around NACA 0012 airfoil in the wide range of incoming flow Mach numbers and angles of attack. The multi-parameter analysis was performed and a correlation between the flow structure and distributed and integral characteristic was revealed. The self-sustained shock oscillations on the NACA 0012 airfoil were studied with the effect of the airfoil surface temperature on the transonic steady and unsteady flow field’s structure, local supersonic zone size, and buffet is disclosed and analyzed. The influence of boundary layer suction on self-sustained shock oscillations was investigated. It was displayed that with the help of changing the boundary layer characteristics by removing slow moving gas particles, it is possible to decrease the size of the separated zone and eliminate self-sustained shock oscillations.


References:

  1. Петров К.П. Аэродинамика элементов летательных аппаратов. − М.: Машиностроение, 1985. − 272 c.

  2. Коул Дж. Трансзвуковая аэродинамика. − М.: Мир, 1989. − 360 с.

  3. Приходько А.А. Компьютерные технологии в аэрогидродинамике и тепломассообмене / А.А. Приходько // Киев : Наукова думка, 2003. - 382 с.

  4. Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flow // AIAA Paper. − 1992. − N 92-0439. − 22 p.

  5. Roe P.L. Characteristic-based schemes for the Euler equations / P.L. Roe // Annual review of fluid mechanics. - 1986. - V.18. - P. 327-336.

  6. Полевой О.Б., Приходько А.А.Численное моделирование управления отрывом сверхзвукового трехмерного потока при обтекании стреловидных углов сжатия // Аэрогидродинамика: проблемы и перспективы. − Харьков: ХАИ. − 2006. − Вып. 2. − С. 101-119.

  7. Пилипенко А.А., Полевой О.Б., Приходько А.А. Численное моделирование влияния числа маха и угла атаки на режимы трансзвукового турбулентного обтекания аэродинамических профилей // Ученые записки ЦАГИ. 2012. Т. 43, №1. - С. 1-31.

 

 
     

© SPIC "Kappa", LLC 2009-2016