2013 1(12)

Back to table of content

   Short abstract

 

Pages:

403 - 409

Language:

RU

Ref.:

11


Click to get extended abstract


Download paper: [RU]

2013_1(12)_71.pdf

 

 

CFD MODELING OF TRANSFER PROCESSES AND OF POLLUTAN'S FORMATION BY PREMIXED COMBUSTION THE NATURAL GAS WITH AIR HUMIDIFIED BY MEANS OF MAISOTSENKO CYCLE

Soroka B.S., Zgurskiy V.A.

The Gas Institute NAS of Ukraine, Kiev, Ukraine


Citation:

Soroka B.S. CFD modeling of transfer processes and of pollutan's formation by premixed combustion the natural gas with air humidified by means of maisotsenko cycle / B.S. Soroka, V.A. Zgurskiy // Modern Science: Researches, Ideas, Results, Technologies. - Dnepropetrovsk: SPIC "Triacon". - 2013. - Iss. #1(12). - PP. 403 - 409


Keywords:

carbon oxides CO; CFD modeling; combustion; equilibrium thermodynamics; humidified air-oxidant; Maisotsenko cycle; natural gas (methane); nitrogen oxides NO (NOx)


Abstracts:

The systematic researches of power and environmental characteristics of combustion process the premixed natural gas (methane) flow with humid air –oxidant has been carried out by means of equilibrium thermodynamics and CFD-modeling techniques.
Possibility of significant improvement of environmental characteristics of combustion including NO and CO formation by an air humidification has been stated. Estimation of harmful substances yield is carried out by means of comparison the NO and CO concentrations at the combustion chamber exit: [NO]еx, [СO]еx – respectively. Specific yields of harmful substances per unit of useful energy are computed with account of combustion efficiency by processing the initial thermodynamic or kinetic data on [NO], [СO] and the flame temperatures. Increase of an air absolute moisture content da by any (even small) air preheats causes the lowering impact of humidity on pollutants formation, being stronger that negative (increasing) effect of temperature growth. As a result of forestalling influence of d the [NO] and [СO] are reduced.
As an example the environmental characteristics improvement somebody can indicate 18 – times reduction of [NO]еx and 2.13 – times [СO]еx decrease by methane burning with saturated air at Та = 325 K in comparison with the pollutants content in flue gases by conditions of dry air-oxidant.


References:

  1. Gillan L. Maisotsenko Cycle for Cooling Processes, // International Journal of Energy for a Clean Environment. (IJECE) - 2008, -Vol. 9, Nu. 1-3. - P. 47 - 64. - Copyright 2010 by Begell House, Inc. Printed August, 5, 2010, (USA).

  2. Guillet R. Vapor pump and condensing heater// Gas Wärme Int. -1991. - 40, H.6. - S. 248 -252.

  3. Soroka B. et al. A decentralized heat-supply system employing submerged-combustion burners: thermodynamic analysis and way of improvement furnaces // Industrial Heat Engineering. -2001. -Vol. III, №3-4. - P.92-99.

  4. Soroka B.S. Pribligenniy metod ucheta vliyaniya sostava toplivnoy smesi na obrazovanie oksidov azota v procesah goreniya [An approximated method of accounting the effect of the fuel mixture composition and parameters on formation of nitrogen oxides in combustion processes] // Ecotechnologies and Resource saving. - 1993, №6. -P.47 - 53.

  5. Guillet R. Wet way combustion: energy efficiency, environmental protection / Elsevier, 2000, Paris. - 137 p.

  6. Сорока Б.С. Низкоэмиссионное сжигание подготовленных газо-воздушных смесей в камере с рециркуляцией продуктов сгорания / Б.С. Сорока, В.А. Згурский, М. Хинкис // Современная наука: исследования, идеи, результаты, технологии. - Днепропетровск: НПВК "Триакон". - 2013. - Вып. 1(12). - С. 368 - 374

  7. Szewczyk D., Engdahl J., Stachowski A. High Temperature Burners (HTB) as the result of the connection of HiTAC combustion technology with central recuperative systems Proceedings: 8th International Symposium on High Temperature Air Combustion and Gasification, July5-7, 2010, Poznan, Poland, P. 337 - 345.

  8. Boumen K.T. Kinetika obrasovaniya i raslogeniya sagryasnyayuscih vescestv v plameni: Per.s angl./Red.Chigier N.A. [The kinetics of formation and decomposition of pollutants under combustion. In: The formation and decomposition of pollutants in the flame] - M.: Mashinostroenie, 1981. P.59-83.

  9. Sigal A.I. Mehanism vliyaniya vlagi, vvedenoy v dutyevoy vozduh, na intensificaziyu prozesa goreniya uglevodorodnih topliv, obrazovanie i raslojenie toksichnih vescestv [Influence of moisture entered in blast air for intensification of the process of combustion of hydrocarbon fuels, formation and decomposition of toxic substances] // In proceedings of conference " "Ukraine - Russia - Skolkovo": single innovative space. May 22-23, 2013, - Kiev, Ukraine. - P.111 - 112.

  10. Hermann F., Klingmann J., Gabrielsson R. Computational and Experimental Investigation of Emissions in a Highly Humidified Premixed Flame //Proceedings of 2003 ASME Turbo Power for Land, Sea & Air. - June 16 - 19, 2003 - Atlanta, Georgia, US. - GT 2003 -38337.

  11. Soroka B., Combined power and environmental optimization of fuel- oxidant composition and initial parameters: thermodynamic approach and industrial validation // International Journal of Energy for a Clean Environment. (IJECE) - 2008, -Vol. 9, Nu. 1-3. - P. 65 - 89. - Copyright 2010 by Begell House, Inc. Printed August, 5, 2010.

 

 
     

© SPIC "Kappa", LLC 2009-2016