2013 1(12)

Back to table of content

   Short abstract



368 - 374





Click to get extended abstract

Download paper: [RU]





Soroka B.S.1, Zgurskiy V.A.1, Khinkis M.2

1 The Gas Institute NAS of Ukraine, Kiev, Ukraine
2 Gas Technology Institute (GTI), Des Plaines, USA


Soroka, B.S., Zgurskiy, V.A. and Khinkis, M., (2013) Low-emission burning of premixed gas-air mixtures in the chamber by combustion products recirculation, Modern Science: Researches, Ideas, Results, Technologies, Iss. #1(12), PP. 368 - 374.


carbon oxides CO; low-emission burning; natural gas; nitrogen oxides NO; power and environmental analysis; premixed flow; recirculation; insert (sleeve); water vapor; wet (humid) combustion


Toxic substances formation: oxides of nitrogen NO and of carbon CO – by premixed flow of natural gas (methane) with an air oxidant combustion has been studied by the procedures of CFD modeling. The combustion process under consideration takes place in cylindrical chamber by various operation conditions. Combustion products (flue gases) recirculation due to arrangement the Recirculation Sleeve coaxially to the chamber walls and an air-oxidant humidification are considered as an impact factors to reduce NO (NOx) issue. It has been stated that we’ve succeeded to great reduction of NO concentration (in combustion products for 4.3 – 4.5 times) by joint effect of both mentioned factors even in conditions of low (20.4 g/kg of dry air) content of water vapor in combustion air. An important advantage of this combined approach makes the attendant lowering of outlet CO concentration at the combustion chamber exit – up to 25 – 30 %. The shortcoming of combustion air humidification is presented by some lowering the power efficiency of the combustion chamber.


  1. Lavrov, N.V., Rosenfeld E.I., Khaustovich G.P. Processy goreniya topliva i zashchita okruzhayushchej sredy, [Fuel combustion processes and environmental protection], Moscow, Metalurgy, 1981 -240p.

  2. Sigal I. Zashchita vozdushnogo basseyna pri szhiganii topliva, [Air field protection by fuel combustion], - The 2nd ed. and added with complements, - Nedra, 1988. - 312p.

  3. Obrazovanie i razlozhenie zagrjaznjajushchih veshhestv v plameni, [Pollution formation and destruction in flames], Vol.1/ Edited by N.A. Chigier - Pergamon Press Ltd, 1976. - 312pp.

  4. Gregory D.P. Hydrogen Energy, Part B. New-York-London, 1975, Р.1209 -1217.

  5. Soroka B.S., Pyaykh K.Ye., Zgurskyi V.A., Apalkov A.P. Kombinirovanie sposobov snizhenija obrazovanija oksidov azota pri gorenii - osnovnoe napravlenie obespechenija ekologicheskih normativov, [Combination of reduction of nitrogen oxides formation techniques as the main trend of environmental standards provision by fuel combustion]// Ecotechnologies and Resource saving. - 2000, №5. - P.60 -69.

  6. Soroka B., Khinkis M. Development and mathematical modelling of lowemission radiant tube/ III Medzinarodna conferencia (International Conference) "REFRARCTORIES, FURNACES & THERMAL INSULATIONS" / Proceedings. 8-10 June 2004. - Podbanske - High Tatry, Slovakia. - P.220-225.

  7. Сорока Б.С. Развитие в Институте газа работ в области математического и компьютерного моделирования горения газа и топочных процессов // Энерготехнологии и ресурсосбережение. -2009, №4. - С.62 - 73.

  8. Al-Halbouni A., Hendrik R., Giese A. Entwicklung eines schadstoffemissionsarmen Brennerkonzepts für Industriekesselfeuerugen // GasWärme International (56) #6, 2007. - S. 416 - 419. 9. [Development of a low-pollutantemissions burner concept for industrial boiler combustion systems]

  9. Guillet R. Wet way combustion: energy efficiency, environmental protection / Elsevier, 2000, Paris. - 137 p.

  10. Kazakov and M. Frenklach, http://www. me.berkeley.edu/drm/



© SPIC "Kappa", LLC 2009-2016