2013 1(12)

Back to table of content

   Short abstract



329 - 335





Click to get extended abstract

Download paper: [RU]





Zhukov V.E., Kuznetsov D.V., Moiseev M.I., Bartashevich M.V.

Institute of Thermophysics SB RAS, Novosibirsk, Russia


Zhukov, V.E., Kuznetsov, D.V., Moiseev, M.I. and Bartashevich, M.V., (2013) Propagation dynamics of the self-sustaining evaporation front under the conditions of normal and microgravitation, Modern Science: Researches, Ideas, Results, Technologies, Iss. #1(12), PP. 329 - 335.


boiling; evaporation front; unsteady heat transfer; crisis phenomena; interface instability; experiment


The paper presents the results of experimental research of propagation dynamics of self-sustaining evaporation front at stepped heat release on a horizontal cylindrical surface of technical roughness in Freon-21 at free convection. The experimental data on propagation velocity and interface structure of evaporation fronts were obtained both under the conditions of normal gravitation and microgravitation at the level of 0.005g. Microgravitation was generated via the free fall of the working volume during 0.1 s, at times of process development of up to 0.07 s. It is shown that a significant decrease in gravitation did not lead to a considerable change in dependence of the velocity of self-sustaining evaporation front propagation on the metastable character of the thermal layer. Experimental data on development dynamics of small-scale interface perturbations within the thermal layer were obtained under the conditions of normal gravitation. It is shown that perturbations develop across the thermal layer and they have close characteristics at velocities of evaporation front propagation of 0.58 and 3.9 m/s.


  1. Okuyama K.,Takehara R., Iida Y., and Kim J. Pumping action by boiling propagation in a microchannel // Microscale Thermophys. Eng., 2005, vol. 9, no. 2, pp. 119-135.

  2. Huai X., Wang G., Jin R.,Yin T., and Zou Y. Microscopic explosive boiling induced by a pulsed-laser irradation // Heat Mass Transfer,2008, vol.45, pp. 117-126.

  3. Avksentyuk B.P. Non-equilibrium model of an evaporation front // Russian Journal of Engineering Thermophysics, 1995, vol. 5, pp. 1-8.

  4. Pavlenko A.N., Lel V.V. Model of self-maintaining evaporation front for superheated liquids // Proceedings of the Third Intern. Conf. on Multiphase Flow, ICMF-98, Lyon, France, June 8-12, no. 4. 3-5., Prod. By File M- www.filem.com.,1998, 10 p.

  5. Aktershev S.P., Ovchinnikov V.V. Model of stationary motion of multiphase surface in the layer of extremely heated liquid, // J. Appl. Mech. Tech. Phys., 2008,vol. 49, no.2, pp. 47-55.

  6. Pavlov P.A., Vinogradov V.E. Dinamics of vapor film formation upon rapid superheating of liquid // High Temperature, 2010, T. 48, № 5, pp 683-690.

  7. Syromyatnikov S.N., Pavlov P.A. Instability of evaporating surface // High Temperature, 1998, T. 36, vol 2, pp 282-286.

  8. O.A. Sinkevich, V.V. Glazkov, Yu.P. Ivochkin and A.N. Kireeva Vapor Films under Influence of High Heat Fluxes:Nongravity Surface Waves and Film Explosive Disintegration// Int.J. Nonlinear Sci. Numer. Simul. 2013; 14(1): 1 - 14

  9. Жуков В.Е., Павленко А.Н., Суртаев А.С., Моисеев М.И. Динамика вскипания и кризисные явления при ступенчатом тепловыделении в условиях свободной конвекции во фреоне-21 // Труды Пятой Российской национальной конференции по теплообмену (РНКТ-5).- 25-29 октября 2010, Москва. - 2010. - Т. 4. - С. 84-87.



© SPIC "Kappa", LLC 2009-2016