2012 2(10)

Back to table of content

   Short abstract

 

Pages:

45 - 49

Language:

RU

Ref.:

10


Click to get extended abstract


Download paper: [RU]

2012_2(10)_8.pdf

 

 

STUDY OF NON-STATIONARY VORTICAL PROCESSES IN AXIALLY SYMMETRIC CHAMBER.

Vinokurov A.P.1,2, Shtork S.I.1,2, Alekseenko S.V.1,2

1 Institute of Thermophysics SB RAS, Novosibirsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia


Citation:

Vinokurov, A.P., Shtork, S.I. and Alekseenko, S.V., (2012) Study of non-stationary vortical processes in axially symmetric chamber., Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(10), PP. 45 - 49.


Keywords:

swirled flows; precessing vortex core


Abstracts:

The paper is devoted to numerical and experimental study of non-stationary swirled flow in the model of axially symmetric combustion chamber. Pressure pulsations of precessing vortex core (PVC) were measured by piezoelectric sensors. That allowed to determine the frequency of PVC precession and to research dependence of frequency from different parameters of flow and swirling device. Differential strain sensors were used to study of pressure drop inside the chamber. Using of Laser Doppler Anemometer (LDA) allowed to get distribution of time-averaged axial velocity. Numerical simulations were spent with use of DES (Detached Eddy Simulation) method. Comparison of experimental and numerical data also are presented.


References:

  1. Gupta, A., Lilley, D., Syred, N. (1987). Zakruchenye potoki [Swirl flows], World, Moscow, USSR.

  2. Шторк С.И., Комас О., Фернандес Э.К., Хейтор М.В. Теплофизика и аэромеханика.- 2005.- Т. 12, №2.-С. 229-241.

  3. Syred N. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems // Prog. Energy Combust. Sc. - 2006. - Vol. 32(2). - P. 93-161.

  4. Alekseenko S.V., Kuibin P.A., Okulov V.L. Theory of concentrated vortices: an introduction. Springer-Verlag, Berlin, Heidelberg.

  5. Shtork S.I., Cala C.E., Fernandes E.C. Experimental characterization of rotating flow field in a model vortex burner // Experimental thermal and fluid science. - 2007. - Vol. 31. - P. - 779-788.

  6. Martinelli F., Cozzi F., Coghe A. Phaselocked analysis of velocity fluctuation in a turbulent free swirling jet after vortex breakdown. Experiments in Fluids, 2012.

  7. Техническое описание и инструкция по эксплуатации ЛАД 06-и, Новосибирск: Институт оптикоэлектронных информационных технологий, 2006 (URL:http://www.ioit.ru)

  8. Spalart P.R. Detached Eddy Simulation. Fluid Mechanics, 2009, 41. 181-202.

  9. Paik J., Sotiropoulos F. Numerical simulation of strongly swirling turbulent flows through an abrupt expansion. International journal of heat and fluid flow, 2010, 31: P.390-400.

  10. Alekseenko, S.V., Kuibin, P.A., Okulov, V.L., Shtork, S.I. Vortex precession in a gas-liquid flow // Heat Transfer Research. - 2010. - Vol. 41(4). - P. 465-477.

 

 
     

© SPIC "Kappa", LLC 2009-2016