2012 2(10)

Back to table of content

   Short abstract

 

Pages:

324 - 329

Language:

RU

Ref.:

15


Click to get extended abstract


Download paper: [RU]

2012_2(10)_55.pdf

 

 

INVESTIGATION OF LEAN COMBUSTION REGIMES FLOW STRUCTURE IN A MODEL COMBUSTOR BY MEANS OF PIV

Dulin V.M., Markovich D.M., Chikishev L.M.

Institute of Thermophysics SB RAS, Novosibirsk, Russia


Citation:

Dulin, V.M., Markovich, D.M. and Chikishev, L.M., (2012) Investigation of lean combustion regimes flow structure in a model combustor by means of PIV, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(10), PP. 324 - 329.


Keywords:

turbulent swirling flames; lean premixed combustion; large scale vertical structures


Abstracts:

The results of flow structure measurements for lean combustion regimes in a model combustor with different swirl rate are presented. Two cases of swirl were considered: low swirl (S=0.4) without setting of central recirculation zone and strong swirl (S=1.0) with a vortex breakdown. High-Repetition Stereo PIV system was used to study the flow structure of isothermal and reacting flow. Through the use of this method velocity fields in the central cross-section of the combustor were measured and the flow structure of lean premixed methane-air flames was analyzed.


References:

  1. A.K. Gupta, D.G. Lilley, N. Syred, Swirl flows. Abacus Press, Kent, England, 1984, p 475

  2. D. Dunn-Rankin, Lean Combustion: Technology and Control. Academic Press, 2008, p. 280

  3. Billant P., Chomaz J.-M., Huerre P.// Experimental study of vortex breakdown in swirling jets //J. Fluid Mech., 376 (1998) 183-219.

  4. Liang H., Maxworthy T., An experimental investigation of swirling jets. // J. Fluid Mech., 525 (2005) 115-159.

  5. Mourtazin D., Cohen J., The effect of buoyancy on vortex breakdown in a swirling jet. // J. of Fluid Mech., 571 (2007) 177-189.

  6. Gallaire F., Rott S., Chomaz J.-M., Experimental study of a free and forced swirling jet // Phys. Fluids, 16 (2004) 29072917.

  7. Loiseleux T., Chomaz J.M., Breaking of rotational symmetry in a swirling jet experiment // Phys. Fluids, 15 (2003) 511523

  8. Alekseenko S.V., Dulin V.M., Kozorezov Y.S., Markovich D.M., Shtork S.I., Tokarev M.P. Flow Structure of Swirling Turbulent Propane Flames // Flow Turbulence and Combustion. - 2011, DOI 10.1007/s10494011-9340-5.

  9. R.K. Cheng, Low swirl combustion, in R. Dennis (Ed.) The Gas Turbine Handbook, DOE, Washington, DC, 2006.

  10. Legrand M., Nogueira J., Lecuona A., Nauri S., Rodríguez P.A., Atmospheric low swirl burner flow characterization with stereo PIV //Exp. Fluids, 48 (2009) 901-913.

  11. Konle M., Kiesewetter F., Simultaneous high repetition rate PIV-LIF-measurements of CIVB driven flashback // Sattelmayer T., Exp. Fluids, 44 (2008) 529-538.

  12. Willert C., Jarius M. (2002) Planar flow field measurements in atmospheric and pressurized combustion chambers // Exp. Fluids 33, p.931-939

  13. Foucaut, J.M., and Stanislas, M. (2002) Some considerations on the accuracy and frequency response of some derivative filters applied to particle image velocimetry vector fields. Meas. Sci. Technol., 13, 1058-1071

  14. Маркович Д.М., Токарев М.П. Алгоритмы реконструкции трехкомпонентного поля скорости в методе Stereo PIV// Вычис. методы и программир.2008. 9. С. 311-326

  15. Дулин В.М., Козорезов Ю.С., Маркович Д.М., Токарев М.П. Исследование газодинамической структуры потока в закрученном турбулентном пламени методом цифровой трассерной визуализации // Вестн. НГУ Сер. Физика. 2009 4. вып. 3, С. 30-42

 

 
     

© SPIC "Kappa", LLC 2009-2016