2012 2(10)

Back to table of content

   Short abstract



264 - 271





Click to get extended abstract

Download paper: [RU]





Kupershtokh A.L.

Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia


Kupershtokh, A.L., (2012) Phase transitions liquid-vapor in strong electric fields, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(10), PP. 264 - 271.


Lattice Boltzmann Equation Method; phase transitions; dynamics of multiphase media; binary mixtures; breakdown of dielectric liquids; electrostrictive instability; computer simulations; parallel computing; graphics processing units; hybrid GPU-clusters


In the lattice Boltzmann equation method (LBE), the different phases of a substance are usually simulated as one fluid. Use of Graphics Processing Units (GPU) allows us to exploit a new level of simulations of multi-physic problems. The 3D simulations of a spinodal decomposition were carried out on grids consisting of more than 250 million nodes. The simulations of an anisotropic decay of binary mixtures of dielectric liquids with a solute gas in strong electric fields to a system of gas-vapor filamentary channels in a liquid was performed. The gas-vapor channels expand because of the diffusion of a solute gas from the liquid, evaporation of liquid into channels, and due to a process of coalescence of channels. The critical value of the uniform electric field decreases considerably with an increase in the initial concentration of a solute gas. This indicates that such an anisotropic (electrostrictive) mechanism of the generation, growth and branching of the channels of streamer during the breakdown of real dielectric liquids in the nanosecond range is possible.


  1. Kupershtokh A.L., Medvedev D.A. Anisotropic instability of a dielectric liquid in a strong uniform electric field: Decay into a twophase system of vapor filaments in a liquid // Phys. Rev.E. 2006. Vol. 74, N 2. P. 021505.

  2. Карпов Д.И., Куперштох А.Л. Анизотропный спинодальный распад полярного диэлектрика в сильном электрическом поле: метод молекулярной динамики // Письма в ЖТФ. 2009. Т. 35. Вып. 10. С. 87-94.

  3. An W., Baumung K., Bluhm H. Underwater streamer propagation analyzed from detailed measurements of pressure release // J. Appl. Phys. 2007. Vol. 101, N 5. P. 053302.

  4. Kupershtokh A.L., Karpov D.I. Simulation of ultra-fast streamer growth governed by the mechanism of anisotropic decay of a dielectric liquid into a liquid-vapor system in high electric fields // Proc. 5th Conf. SFE, Grenoble, France. 2006. P. 179-184.

  5. Kupershtokh, A.L. (2005). "Simulation of flows with liquid-vapor interfaces by the lattice Boltzmann method", Vestnik NGU (Quart.J. of Novosibirsk State Univ.), Series: Math., Mech. and Informatics, Vol. 5, No. 3, pp. 29-42.

  6. Kupershtokh A.L., Medvedev D.A., Karpov D.I. On equations of state in a lattice Boltzmann method // Computers and Mathematics with Applications, 2009. Vol. 58, N 5. P. 965-974.

  7. Kupershtokh A.L. Criterion of numerical instability of liquid state in LBE simulations // Computers and Mathematics with Applications, 2010. V. 59, N 7. P. 2236-2245.

  8. Kupershtokh, A.L. (2012). "Three-dimensional simulations of two-phase liquid-vapor systems on GPU using the lattice Boltzmann method", Numerical Methods and Programming, Vol. 13, pp. 130-138.

  9. Qian Y.H., Orzag S.A. Lattice BGK models for the Navier - Stokes equation: Nonlinear deviation in compressible regimes // Europhys. Lett. 1993. Vol. 21. P. 255-259.

  10. Qian Y.H., Chen S. Finite size effect in lattice-BGK models // International Journal of Modern Physics C. 1997. Vol. 8, N 4. P. 763-771.

  11. Kupershtokh A.L., Karpov D.I., Medvedev D.A., Stamatelatos C.P., Charalambakos V.P., Pyrgioti E.C., Agoris D.P., Stochastic models of partial discharge activity in solid and liquid dielectrics // IET Science, Measurement and Technology. 2007. V. 1, N 6. P. 303-311.

  12. Kupershtokh A.L. New method of incorporating a body force term into the lattice Boltzmann equation // Proc. of the 5th International EHD Workshop, Poitiers, France, 2004, pp. 241-246.

  13. Kupershtokh, A.L. (2004). "Incorporating a body force term into the lattice Boltzmann equation", Vestnik NGU (Quart.J. of Novosibirsk State Univ.), Series: Math., Mech. and Informatics, Vol. 4, No. 2, pp. 75-96.

  14. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. - М.: Гос. изд-во. физ.-мат. литературы. 1959. - 532 с.



© SPIC "Kappa", LLC 2009-2016