2012 2(10)

Back to table of content

   Short abstract

 

Pages:

232 - 238

Language:

RU

Ref.:

10


Click to get extended abstract


Download paper: [RU]

2012_2(10)_41.pdf

 

 

MODELS DEVELOPMENT FOR DESCRIPTION OF UNSTEADY PHENOMENA IN HYDROTURBINES

Kuybin P.A.1, Pylev I.M.2, Zakharov A.V.2

1 Institute of Thermophysics SB RAS, Novosibirsk, Russia
2 OJSC Power Machines, St.Peterburg, Russia


Citation:

Kuybin, P.A., Pylev, I.M. and Zakharov, A.V., (2012) Models development for description of unsteady phenomena in hydroturbines, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(10), PP. 232 - 238.


Keywords:

hydro turbine; instability; swirl flow; cavotation


Abstracts:

For hydroturbines operating at non-optimum load strong pressure pulsations and vibrations can arise. One of the instability generation mechanism is caused by cavitation existence behind the runner. In paper by Chen et al. (2008) this phenomenon was modeled with use of a concept of cavitational compliance. As results destabilization effects of both diffuser and swirl were demonstrated. In the present paper we consider coefficients of the characteristic equation solution of which yields the eigen frequencies and increments of oscillations. Influence of the vorticity distribution and size of the cavity behind the runner on these coefficients are studied. The swirl effect on the instability is shown to be much less than described in the literature. Moreover the influence decreases quickly with cavity size growth.


References:

  1. Chen C., Nicolet C., Yonezawa K., Farhat M., Avellan F., Tsujimoto Y. One-dimensional analysis of full load draft tube surge // J. Fluids Eng. - 2008. - Vol. 130. - P. 041106-1 - 041106-6.

  2. Chen C., Nicolet C., Yonezawa K., Farhat M., Avellan F., Tsujimoto Y. One-Dimensional Analysis of Full Load Draft Tube Surge Considering the Finite Sound Velocity in the Penstock // J. Fluid Machinery and Systems. - 2009. Vol. 2, No. 3. - P. 260 - 268.

  3. Alekseenko, S.V., Kuibin, P.A., Okulov, V.L., Shtork, S.I. Vortex precession in a gas-liquid flow // Heat Transfer Research. - 2010. - Vol. 41(4). - P. 465-477.

  4. Алексеенко С.В., Куйбин П.А., Окулов В.Л. Введение в теорию концентрированных вихрей. - Москва-Ижевск: Институт компьютерных исследований, 2005. - 504 C.

  5. Kuibin P.A., Okulov V.L., Pylev I.M. Simulation of flow structure in the suction pipe of a hydroturbine by integral characteristics // Heat Transfer Research. 2006. Vol. 37, Iss. 8. - P. 675-684.

  6. Kuibin P.A. A model of gas-liquid swirl flow // Abs. 8th European Fluid Mechanics Conf. Bad Reichenhall, Germany, 13-16 September, 2010. - P. S5-26.

  7. Susan-Resiga R., Ciocan G.D., Anton I., Avellan F. Analysis of the Swirling Flow Downstream a Francis Turbine Runner // J. Fluids Eng. - 2006. - Vol. 128. - P. 177 - 189.

  8. Alekseenko S.V., Kuibin P.A., Okulov V.L., Shtork S.I. Helical vortices in swirl flow // J. Fluid Mech. - 1999. - Vol. 382. - P. 195 - 243.

  9. Куйбин П.А., Окулов В.Л. Одномерные решения для течений с винтовой симметрией // Теплофизика и аэромеханика. - 1996. - № 4. - С. 311 - 315.

  10. Wang X., Nishi M., Tsukamoto H. A simple model for predicting the draft tube surge // Proc. 17th IAHR Symposium, Beijing, China, 1994. - P. 95 - 105.

 

 
     

© SPIC "Kappa", LLC 2009-2016