2012 2(10)

Back to table of content

   Short abstract

 

Pages:

214 - 219

Language:

RU

Ref.:

11


Click to get extended abstract


Download paper: [RU]

2012_2(10)_38.pdf

 

 

AURGMENTATION OF HEAT TRANSFER FROM A CYLINDER TO A PULSATING CROSS FLOW

Mikheev A.N., Mikheev N.I., Molochnikov V.M.

Research Centre for Power Engineering Problems, Kazan Scientific Centre (KNC) of RAS, Kazan, Russia


Citation:

Mikheev, A.N., Mikheev, N.I. and Molochnikov, V.M., (2012) Aurgmentation of heat transfer from a cylinder to a pulsating cross flow, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(10), PP. 214 - 219.


Keywords:

pulsating flow; cylinder; near wake; vortical structure; heat transfer augmentation; mechanism; frequency


Abstracts:

Processes in a cross flow around a circular cylinder typical for tube heat exchangers are considered. The effect of superimposed periodic unsteadiness on heat transfer and flow structure in the near wake of the cylinder is studied. Flow visualization has been conducted; average heat transfer coefficient and distribution of local heat transfer coefficient over the cylinder surface have been estimated experimentally. Typical regimes of pulsating flow around the cylinder have been identified, among which there is a regime of full synchronization of vortex shedding frequency with the frequency of superimposed unsteadiness of the external flow. The mechanism of the influence of superimposed unsteadiness on vortex generation behind the cylinder has been described. The regimes corresponding to the maximum heat transfer from the cylinder surface to the pulsating flow have been determined.


References:

  1. Popov I.A., Makhyanov Kh.M., Gureev V.M. Fizicheskie osnovy i promyshlennoe primenenie intensifikatsii teploobmena / Pod obshch. red. Yu.F. Gortyshova. - Kazan: Tsentr innovatsionnykh tekhnology, 2009. - 560 s.

  2. Зубков H.H. Разработка и исследование метода деформирующего резания как способа формообразования развитых микрорельефов: Автореф. дис... докт. тех. наук. М., 2001. - 32 с.

  3. Антуфьев В.М. Сравнительные исследования теплоотдачи и сопротивления ребристых поверхностей / / Энергомашиностроение. 1961. - №2. - С. 12 - 16.

  4. Кэйс В.М., Лондон A.JI. Компактные теплообменники М. : Энергия, 1967. - 223 с.б.Антуфьев В.М. Сравнительные исследования конвективных поверхностей на основе энергетических характеристик // Энергомашиностроение. 1964. - №5. - С. 9-13.

  5. Беленький М.Я. и др. Теплогидравлические характеристики поперечно обтекаемых поверхностей с лунками II Теплоэнергетика, 1997.- № 1.- с. 49-51

  6. Fand, R.M., and Kaye, J. The Influence of Sound on Free Convection from a Horizontal Cylinder, J. Heat Transfer, 1961. vol.83, p.133. Lee, B.H., and Richardson, P.D. Effect of Sound on Heat Transfer from a Horizontal Circular Cylinder at Large Wavelength, J. Mech. Eng. Sci., 1965. vol.7, pp.127-130

  7. Martinelli, R.C., and Boelter, L.M. K. The Effect of Vibration on Heat Transfer by Free Convection from a Horizontal Cylinder, Heat. Piping Air Cond., 1939. vol.11, pp.525-527

  8. Hsieh, R., and Marsters, G.F. Heat Transfer from a Vibrating Vertical Array of Horizontal Cylinders, Can.J. Chem. Eng., 1973, vol.51, pp.302-306

  9. Ongoren A., Rockwell D. Flow structure from an oscillating cylinder Part 1. Mechanisms of phase shift and recovery in the near wake // J. Fluid Mech. 1988. vol. 191, P. 197-223.

  10. Т.В.Малахова Теплоотдача колеблющегося цилиндра в потоке вязкой несжимаемой // Теплофизика и аэромеханика, 2012, №1, т.19, с.75-82

  11. Dyban, E.P. and Epick, E. Ya. (1985). Teplomassoobmen i gidrodinamika turbulizirovannykh potokov [Heat and mass transfer and hydrodynamics of turbulence streams], Naukova dumka, Kiev, USSR.

 

 
     

© SPIC "Kappa", LLC 2009-2016