2012 2(10)

Back to table of content

   Short abstract

 

Pages:

165 - 171

Language:

RU

Ref.:

27


Click to get extended abstract


Download paper: [RU]

2012_2(10)_30.pdf

 

 

NUMERICAL SIMULATION OF THE TWO-DIMENSIONAL FRONT STRUCTURE OF DETONATION OF A METHANE-AIR MIXTURE

Trotsyuk A.V., Fomin P.A., Vasiliev A.A.

Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia


Citation:

Trotsyuk, A.V., Fomin, P.A. and Vasiliev, A.A., (2012) Numerical simulation of the two-dimensional front structure of detonation of a methane-air mixture, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(10), PP. 165 - 171.


Keywords:

сell; detonation; numerical simulation; model of chemical kinetics; methane-air mixture


Abstracts:

The work is devoted to numerical investigation of the multi-front (cellular) structure of two-dimensional detonation wave in a stoichiometric methane-air mixture at normal condition. For this purpose the model of methane detonation combustion has been developed in the frame of two-stage mechanism of the detonation kinetics (an induction stage and a main heat-release stage). A numerical simulation of two-dimensional structure of detonation waves in methane-air mixture in a wide range of transverse size of the channel has been done. The changes in the structure of the established self-sustaining detonation wave with variation of the channel width have been studied. Based on the analysis of the obtained flowfields, the detonation cell width for stoichiometric methane-air mixture is defined as equals to 33 ± 3 cm. This value is in excellent agreement with experimental data. The proposed model of the detonation combustion kinetics of methane-air and methane-oxygen mixtures is highly accurate and consistent with the second law of thermodynamics. The advantage of this model is its simplicity and ease of its integration in the multi-dimensional gas-dynamic numerical codes.


References:

  1. Войцеховский Б.В., Митрофанов В.В., Топчиян М.Е. Структура фронта детонации в газах. − Новосибирск: Изд-во СО АН СССР, 1963.

  2. Fickett W., Davis W.C. Detonation. − University of California Press, Berkeley, CA, 1979.

  3. Зельдович Я.Б., Компанеец А.С. Теория детонации. − М.: Гостехиздат, 1955.

  4. Нетлетон М. Детонация в газах. − М.: Мир, 1989. - 280 С

  5. Троцюк А.В. Численное моделирование структуры двумерной газовой детонации смеси H2-O2-Ar // Физика горения и взрыва. − 1999. − Т. 35, − No.5. − С. 93-103.

  6. Fomin, P.A., Trotsyuk, A.V., Vasil'ev, A.A., Mitropetros, K., Hieronymus, H. and Roekaerts, D. Model of chemical reaction kinetics for calculating detonation processes in gas and heterogeneous mixtures containing hydrogen peroxide. // Combustion Science and Technology. − 2006. − Vol. 178, − P. 895-919.

  7. Васильев А.А., Васильев В.А., Троцюк А.В. Бифуркационные структуры газовой детонации // Физика горения и взрыва. − 2010. − Т. 46, − No.2. − С. 196−206.

  8. Gamezo V.N.; Desbordes D.; Oran E.S. Formation and evolution of two-dimensional cellular detonations. // Combustion and Flame. − 1999. − Vol. 116. − No. 1. −P. 154 − 165.

  9. Gamezo V.N., Vasil'ev A.A., Khokhlov A.M., Oran E.S. Fine cellular structures produced by marginal detonations. // Proceedings of the Combustion Institute. − 2000. − Vol. 28. − P. 611 − 617.

  10. Левин В.А., Коробейников В.П. Сильный взрыв в горючей смеси газов // Изв. АН СССР. Механика жидкости и газа. - 1969. - No.6. - C. 48 - 51.

  11. Soloukhin, R.I. (1969). Measurement methods and basic results of shock-tube experiments. Proceedings of the 7th Int. Symposium on Shock Tubes, Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk.

  12. Vasil'ev, A.A. (1998). Effect of nitrogen on multifront detonation parameters. Combustion, Explosion, and Shock Waves, Vol. 34, pp. 72−76.

  13. Васильев А.А., Николаев Ю.А. Модель ячейки многофронтовой газовой детонации. // Физика горения и взрыва. - 1976. - Т. 12, - No.5. - С. 744 - 754.

  14. Николаев Ю.А. Модель кинетики химических реакций при высоких температурах // Физика горения и взрыва. - 1978. - Т. 14, - No.4. - С. 73 - 76.

  15. Николаев Ю.А., Зак Д.В. Согласование моделей химических реакций со вторым началом термодинамики // Физика горения и взрыва. - 1988. - Т. 24, - No.4. - С. 87 - 90.

  16. Николаев Ю.А., Фомин П.А. О расчете равновесных течений химически реагирующих газов // Физика горения и взрыва. - 1982. - Т. 18. - No.1. - С. 66-72.

  17. Фомин П.А., Троцюк А.В. Приближённый расчёт изоэнтропы химически равновесного газа // Физика горения и взрыва. - 1995. - Т. 31, - No.4. - С. 59 - 62.

  18. Годунов С.К. Численное решение многомерных задач газовой динамики / С.К. Годунов, А.В. Забродин, В.Я. Иванов, А.И. Крайко, Г.П. Прокопов. - М.: Наука, 1976. - 400 с.

  19. Yamamoto S., Daiguji H. Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations // Computer Fluids. - 1993. - Vol. 22. - No.2/3. - P. 259-270.

  20. Daiguji H., Yuan X., Yamamoto S. Stabilization of higher-order high resolution schemes for the compressible NavierStokes equation // International Journal of Numerical Methods for Heat and Fluid Flow. - 1997. - Vol. 7. - No.2/3. - P. 250- 274.

  21. Lin S.-Y., Chin Y.-S. Comparison of higher resolution Euler schemes for aeroacoustic computations // AIAA Journal. - 1995. - Vol. 33. - No.2. - P. 237-245.

  22. Chakravarthy S.R., Osher S. A new class of high accuracy TVD schemes for hyperbolic conservation laws // AIAA 23rd Aerospace Sciences Meeting. Reno, Nevada. - 1985. - AIAA Paper No.85-0363.

  23. Batten P., Leschziner M.A., Goldberg U.C. Average-state Jacobians and implicit methods for compressible viscous and turbulent flows // J. Comput. Phys. - 1997. - Vol. 137. - P. 38-78.

  24. Coquel F. and Perthame B. Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics // SIAM J. Numer. Anal. - 1998. - Vol. 35. - No.6. - P. 2223-2249.

  25. Shen J.W., Zhong X. Semi-implicit Runge-Kutta schemes for non-autonomous differential equations in reactive flow computations. - 1996. - AIAA Paper No.96-1969.

  26. Vasil'ev A.A., Valishev A.I., Vasil'ev V.A., Panfilova L.V., Topchian M.E. Detonation hazards of methane mixtures. // Archivum Combustionis. - 2000. - Vol. 20. - No. 3-4. - P.31 - 48.

  27. Васильев А.А., Троцюк А.В. Экспериментальное исследование и численное моделирование расширяющейся многофронтовой детонационной волны // Физика горения и взрыва. - 2003. Т. 39, − No.1. − С. 92 − 103.

 

 
     

© SPIC "Kappa", LLC 2009-2016