2012 2(10)

Back to table of content

   Short abstract

 

Pages:

3 - 9

Language:

RU

Ref.:

7


Click to get extended abstract


Download paper: [RU]

2012_2(10)_1.pdf

 

 

MATHEMATICAL MODEL OF ZIRCONIUM LIQUID-PHASE BURNING

Sulatskiy A.A.

A.P.Aleksandrov Scientific Research Tecnological Institute (NITI), Sosnovy Bor, Russia


Citation:

Sulatskiy, A.A., (2012) Mathematical model of zirconium liquid-phase burning, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(10), PP. 3 - 9.


Keywords:

reactor severe accident; molten corium; core catcher; sacrificial material; zirconium; liquid-phase burning; mathematical model


Abstracts:

The paper presents a semi-empirical model for liquid-phase burning (LPB) of zirconium which is contained in molten corium generated after a severe accident in a VVER type reactor and relocated into a core catcher. Burning occurs in a thin molten corium layer (burning front – BF) adjacent to the surface of solid “sacrificial material” which is a source of oxygen. Based on experiment data, a process model is developed which is valid for arbitrary conditions of heat transfer between BF and melt. Dimensionless variables are suggested for describing the process in the generalized form. Different cases of BF-melt interaction are considered. Conditions for initiation of aperiodic instability in liquid-phase burning of zirconium are obtained.


References:

  1. Asmolov V.G., Bechta S.V., Berkovich V.M. et al. VVER-1000 Reactor Core Melt Catcher of Cold Crucible Type // Procideengs of Internatioanl Congress on Advances in Nuclear Power Plants (ICAPP 05), May 1519, 2005 - Seoul, Korea - Paper 5238.

  2. Khabensky V.B. et al. Severe Accident Management Concept of the VVER-1000 and the Justification of Corium Retention in a Crucible-type Core Catcher // Nuclear Engineering and Technology. - 2009. - V. 41. - N 5. - P. 561-574.

  3. Асмолов В.Г., Сулацкий А.А., Бешта С.В. и др. Взаимодействие расплава активной зоны ядерного реактора с оксидным жертвенным материалом устройства локализации для АЭС с ВВЭР // ТВТ. - 2007. - Т. 45. - № 1. - С. 28-37.

  4. Beshta S.V., Khabenskiy V.B., Granovskiy V.S. et al. Interaction between oxidic sacrificial material of core catcher and molten corium in severe accident of NPP with WWER // Proceedings of the 5-th Russian Conference on Heat Transfer, Russia, Moscow, October 25-29, 2010, V.1.

  5. Гусаров В.В., Альмяшев В.И., Хабенский В.Б. и др. Физико-химическое моделирование горения материалов с суммарным эндотермическим эффектом // Физика и химия стекла. - 2007. - Т. 33. - № 5. - С. 678-685.

  6. Thermochemical Equilibria Calculation Code Complex Multicomponent Phases GEMINI2 (Gibbs Energy MINImizer). Version 3.4. THERMODATA. 1992-2003. Saint Martin D'Heres. France.

  7. Nuclear Thermodynamic Database "NUCLEA". THERMODATA. 2003. Saint Martin D'Heres. France.

 

 
     

© SPIC "Kappa", LLC 2009-2016