2011 2(7)

Back to table of content

   Short abstract

 

Pages:

208 - 214

Language:

RU

Ref.:

21


Click to get extended abstract


Download paper: [RU]

2011_2(7)_38.pdf

 

 

INVESTIGATION OF JET-FLOW THROUGH PERMEABLE HEATED BARRIER BY DIRECT SIMULATION MONTE-CARLO METHOD

Yudin I.B., Emeliyanov A.A., Rebrov A.K.

Institute of Thermophysics SB RAS, Novosibirsk, Russia


Citation:

Yudin, I.B., Emeliyanov, A.A. and Rebrov, A.K., (2011) Investigation of jet-flow through permeable heated barrier by direct simulation Monte-Carlo method, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(7), PP. 208 - 214.


Keywords:

Monte Carlo method; gas-jet deposition; hot-wire activators; carbon films; Raman spectra


Abstracts:

To obtain diamond films the hot-wire method has been used successfully for the activation of the gas phase in a number of studies. Extending the conditions for obtaining diamond-like coatings by chemical vapor deposition (CVD) of methane-hydrogen mixture led to a method of gas-jet deposition. The difference is the use of high-speed flow precursor at low pressure. In the gas-jet method the activator is a high-permeable barrier which usually leads to the destruction of a supersonic flow and dispersal of activated components. Numerical investigation of gas dynamic structure of the jet into a flooded space with the influence of a heated barrier was conducted using the direct simulation Monte Carlo method. The calculation allowed us to determine all the parameters of the macroscopic moments of the distribution function of molecules. A numerical simulation was to make a choice the optimal form of the activator, allowing to increase the concentration of activated molecules at the substrate compared to conventional heated filaments.


References:

  1. Семёнов А.П., Белянин А.Ф., Семёнова И.А., Пащенко П.В., Барнаков Ю.А. Тонкие плёнки углерода. II. Строение и свойства // ЖТФ. 2000. том 74, вып. 5 С. 101-104

  2. Hideki Matsumura, Keisuke Ohdaira New application of Cat-CVD technology and recent status of industrial implementation // Thin Solid Films 2009. V. 517. P. 34203423

  3. Shanshan Wang, Guohua Chen, Fenglin Yang HFCVD of diamond and its application as electrode in aluminum electrolysis // Thin Solid Films 2009. V. 517. P. 3559-3561

  4. Bink A., Brinza M., Jongen J.P.H., Schropp R.E.I. Continuous hot-wire chemical vapor deposition on moving glass substrates // Thin Solid Films 2009. V. 517. P. 35883590

  5. Li H., Gowri M., Schermer J.J., W.J.P. van Enckevort, Kacsich T. and J.J. ter Meulen. Bias enhanced diamond nucleation on Mo and CrN coated stainless steel substrates in a HFCVD reactor// Diamond and Related Materials. 2007. Volume 16, Issue 11. Pages 1918-1923

  6. Байдакова М.В., Вуль А.Я., Голубев В.Г., Грудинкин С.А., Мелехин В.Г., Феоктистов Н.А., Крюгер А. Получение алмазных плёнок на кристаллическом кремнии методом термического газофазного осаждения // Физика и техника полупроводников. 2002. т.36, вып. 6.

  7. Le Normand F., Gulas M., Veis P., Cojocaru C.S., Bourée J.E. Gas phase and surface kinetics in plasma and hot filament-enhanced catalytic chemical vapor deposition of carbon nanostructures // Thin Solid Films 2009. V. 517. P. 3466-3471

  8. Spitsyn B.V., Bouilov L.L., Alexenko A.E. Prospects of novel hybrid methods for the activated chemical vapor deposition of diamond // Diamond and Related Materials. 1999. №8 P.1371-1376

  9. Жданок С.А., Буяков И.Ф., Крауклис А.В., Лактюшин А.Н., Борисевич К.О., Княшко М.В. Получение углеродных наноматериалов на установке с плазмотроном и рабочей зоной прямоугольного сечения // ИФЖ. 2010. Т.83, №1. С.8-11

  10. Hideaki Matsubara and Junji Kihara. Diamond deposition by means of tantalum filament on WC-Co alloy and other hard materials // Science and technology of new diamond, edited by S. Saito, O. Fukunaga and M. Yoshikawa 1990. Pp. 89-93

  11. Выровец И.И., Грицына В.И., Дудник С.Ф., Опалев О.А., Решетняк Е.Н., Стрельницкий В.Е. Нанокристаллические алмазные CVD-плёнки: структура, свойства и перспективы применения // Физ. инж. поверхн. 2010, т. 8, № 1, vol. 8, No. 1 С. 4-19

  12. Goodwin D.G. and Gavillet G.G. Numerical modeling of the filament-assisted diamond growth environment.J.Appl. Phys. 68(12), 15 December 1990, pp. 6393-6400.

  13. Ребров А.К. Физические основы газоструйного осаждения тонких пленок // Вакуумные технологии и оборудование: сб. докл. VI междунар. конф. - Харьков, 2003. - С.113-122.

  14. Bird G.A. Molecular gas dynamics and the direct simulation of gas flows. Oxford: Clarendon Press, 1994.

  15. Ashkenas H.Z. and Sherman F.S. The Structure and Utilization of Supersonic Free Jets in Low Density Wind Tunnels. Rarefied gas dynamics // Proc. 4th RGD Symp., edited by J.H. De Leeuw. 1996. V 2 p.84-105

  16. Ребров А.К. Динамика расширения газа в вакуум // Вакуумные технологии и оборудование. 2001. Стр. 6-15

  17. Ferrari A.C., Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon // Phys. Rev.B. 2001. V.64. Issue 7

  18. Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon // Phys. Rev.B. 2000. V. 61 №20. P. 14095-14107

  19. Ferrari A., Robertson J. Raman spectroscopy of amorphous, nanostructured, diamondlike carbon, and nanodiamond // Phil. Trans.R. Soc. Lond.A. 2004. V. 362. P. 2477-2512

  20. Tschersich K.G. and von Bonin V.J. Formation of an atomic hydrogen beam by a hot capillary // Appl. Phys. 1998. V. 84, Issue: 8, Pp. 4065 - 4070

  21. Опалев О.А., Пашнев В.К., Ковальчук И.К., Стрельницкий В.Е., Белоус В.А., Колупаева З.И. Синтез алмазных покрытий в тлеющем разряде, стабилизированном магнитным полем // Вопросы атомной науки и техники. Серия: "Вакуум, чистые материалы, сверхпроводники". 2004. №6. (14). С. 167-171.

 

 
     

© SPIC "Kappa", LLC 2009-2016