2011 2(7)

Back to table of content

   Short abstract

 

Pages:

125 - 131

Language:

RU

Ref.:

27


Click to get extended abstract


Download paper: [RU]

2011_2(7)_22.pdf

 

 

HIGH-REPETITION PIV MEASUREMENT OF VORTEX STRUCTURES DYNAMICS IN A LIFTED FLAME

Vinokurova T.A.1,2, Dulin V.M.1,2, Kozorezov Yu.S.1,2

1 Institute of Thermophysics SB RAS, Novosibirsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia


Citation:

Vinokurova, T.A., Dulin, V.M. and Kozorezov, Yu.S., (2011) High-repetition PIV measurement of vortex structures dynamics in a lifted flame, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(7), PP. 125 - 131.


Keywords:

lifted flame; large-scale vortices; control; High-repetition PIV (Particle Image Velocimetry)


Abstracts:

The present paper is devoted to the experimental study of instantaneous flow structure of a lifted premixed propane-air flame by Particle Image Velocimetry system operated at the acquisition rate of 1.1 kHz. The instantaneous velocity fields in the central plane of the flame were measured. The effect of periodic forcing of the initial flow velocity with the frequency of 300 Hz was also investigated. This frequency was selected since it provided the most effective increase of the lifted propane-air flame stability by the forcing for a studied range flow rates. As it was expected, the excitation led to an intensification of vortex structures and to their regular formation before the lifted flame front. In both cases of the unforced and forced flows, the base of the lifted flame was observed to localize at the outer boundary of ring-like vortices where the average flow velocity was lower than in the inner region of mixing layer.


References:

  1. Bollinger L.M., Williams D.T. Experiments on stability of Bunsen-burner flames for turbulent flow // NACA technical note No 1234. - 1947.

  2. Lin C.-K., Jeng M.-S., Yei-Chin Chao Y.-C. The stabilization mechanism of the lifted jet diffusion flame in the hysteresis region // Exp. Fluids. - 1993. - Vol. 14. - P. 353-365.

  3. Harris M.E., Grumer J., Von Elbe G., Lewis B. Burning velocities, quenching, and stability data on non turbulent flames of methane and propane with oxygen and nitrogen // Proc. 3rd Symposium on Combustion, Flame and Explosion Phenomena. Eds: Williams and Williams. - 1949. - P. 80-88.

  4. Вулис Л.А., Ярин Л.П. Аэродинамика факела. - Л.: Энергия, 1978.

  5. Gupta, A., Lilley, D., Syred, N. (1987). Zakruchenye potoki [Swirl flows], World, Moscow, USSR.

  6. Lewis B., Elbe G. Stability and structure of burner flames // J. Chem. Phys. - 1943. Vol.11. - P. 75-97.

  7. Vanquickenborne L. and A.van Tiggelen The stabilization mechanism of lifted diffusion flames // Combastion and Flame. - 1966. - Vol. 10. - N. 1. - P. 59 - 69.

  8. Peters N. The turbulent burning velocity for large-scale and small-scale turbulence // J. Fluid Mech. - 1999. - Vol. 384. - P. 107-132.

  9. Su L.K., Han D., Mungal M.G. // Proc. Combust. Inst. - 2000. - Vol. 28. - P. 327-333.

  10. Hasselbrink E.F., Mungal M.G. // Proc. Combust. Inst. - 1998. - Vol. 27. - P. 867- 873.

  11. Schefer R.W., Goix P.J. // Combust. Flame - 1998. - Vol. 112. - P. 559-574.

  12. Burgess C.P., Lawn C.J. The premixture model of turbulent burning to describe lifted jet flames // Combust. Flame - 1999. - Vol. 119. - P. 95-108.

  13. Filatyev S.A., Thariyan M.P., Lucht R.P., Gore J.P. Simultaneous stereo particle image velocimetry and double-pulsed planar laser-induced fluorescence of turbulent premixed flames // Combust. Flame. - 2007. - Vol. 150. - P. 201-209.

  14. Kaplan C.R., Oran E.S., Baek S. // Proc. Combust. Inst. - 1994. - Vol. 25. P. 1183-1192.

  15. Miake-Lye R.C., Hammer J.A. // Proc. Combust. Inst. - 1988. - Vol. 22. P. 817-823.

  16. Broze G., Hussain F. Transitions to chaos in a forced jet: intermittency, tangent bifurcations and hysteresis // J. Fluid Mech. - 1996. Vol.311. - P. 37-71.

  17. Watson K.A., Lyons K.M., Donbar J.M., Carter C.D. // Combust. Flame - 1999. Vol.117. - P. 257-271.

  18. Mansour M.S. Stability characteristics of lifted turbulent partially premixed jet flames // Combust. Flame - 2003. - Vol 133. - P. 263-274.

  19. Wu C.-Y., Chao Y.-C., Cheng T.-S., Li Y.-H., Lee K.-Y., Yuan T. The blowout mechanism of turbulent jet diffusion flames // Combust. Flame - 2006. - Vol. 145. - P. 481-494.

  20. Muniz L., Mungal M.G. Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. // Combust. Flame - 1997. - Vol. 111. - P. 16-31.

  21. Stella A., Guj G., Kompenhans J., Raffel M., Richard H. Application of particle image velocimetry to combusting flows: design considerations and uncertainty assessment // Exp. Fluids - 2001. - Vol. 30. - P. 167-180.

  22. Brown C.D., Watson K.A., Lyons K.M. Studies on Lifted Jet Flames in Co-flow: The Stabilization Mechanism in the Near- and Far-Fields // Flow, Turb. and Comb. - 1999. - Vol. 62. - P. 249-273.

  23. Upatnieks A., Driscoll J.F., Rasmussen C.C., Ceccio S.L. // Combust. Flame - 2004. - Vol. 138. P. 252-272.

  24. Alekseenko S.V., Dulin V.M., Kozorezov Y.S., Markovich D.M., Shtork S.I., Tokarev M.P. Flow Structure of Swirling Turbulent Propane Flames // Flow Turbulence and Combustion. - 2011, DOI 10.1007/s10494011-9340-5.

  25. Tokarev, M.P, Markovich D.M, Bilsky A.V (2007). "Adaptive image processing algorithms for calculating of instantaneous velocity fields", Computational technologies, Vol.2, pp.1-23.

  26. Дулин В.М., Козорезов Ю.С., Маркович Д.М., Токарев М.П. Исследование газодинамической структуры потока в закрученном турбулентном пламени методом цифровой трассерной визуализации // Вестн. НГУ Сер. Физика. 2009 4. вып. 3, С. 30-42

  27. Chao Y.-C., Wu C.-Y., Yuan T. and Cheng T.S. Stabilization process of a lifted flame tuned by acoustic excitation // Combust. Sci. Tech. - 2002. - Vol. 174. - P. 87.

 

 
     

© SPIC "Kappa", LLC 2009-2016