2011 2(7)

Back to table of content

   Short abstract



112 - 118





Click to get extended abstract

Download paper: [RU]





Kupershtokh A.L.

Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia


Kupershtokh, A.L., (2011) Implementation of lattice Boltzmann method on multicore graphics processing units for 3D simulations of two-phase liquid-vapor systems, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(7), PP. 112 - 118.


Lattice Boltzmann Equation Method; phase transitions; dynamics of multiphase flows; thermocapillary effect; computer simulations; numerical stability; graphical processing units


Comparatively new lattice Boltzmann equation method (LBE) is a special discrete model of continuous medium. Now, the LBE method is quite competitive with the traditional methods of computational fluid dynamics. The LBE method has considerable advantages, especially, for multiphase and multicomponent flows. In the LBE method, the different phases of a substance are usually simulated as one fluid. Algorithm of the LBE method is well suitable for parallelization on a large amount of stream processors that are in modern Graphics Processing Units (GPU). The acceleration was achieved about 70-90 times. The 3D simulations of a spinodal decomposition, a breakdown of thin liquid film due to thermocapillary effect and a process of breakdown of a 3D thin-wall liquid bubble were carried out.


  1. McNamara G.R., Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata // Phys. Rev. Lett. 1988. V. 61, N 20. P. 2332-2335.

  2. Higuera F.J., Jiménez J. Boltzmann approach to lattice gas simulations. // Europhys. Lett. 1989. V. 9, N 7. P. 663-668.

  3. Chen S., Doolen G.D. Lattice Boltzmann method for fluid flow // Annu. Rev. Fluid Mech. - 1998. V. 30. P. 329-364.

  4. Aidun C.K., Clausen J.R. Lattice-Boltzmann Method for Complex Flows // Annu. Rev. Fluid Mech. 2010. V. 42. P. 439-472.

  5. Broadwell J.E. Study of rarefied shear flow by the discrete velocity method // J. Fluid Mech., 1964. V. 19. P. 401-414.

  6. Qian Y.H., Orzag S.A. Lattice BGK models for the Navier - Stokes equation: Nonlinear deviation in compressible regimes // Europhys. Lett. 1993. Vol. 21. P. 255-259.

  7. Koelman J.M. V.A. A simple lattice Boltzmann scheme for Navier-Stokes fluid flow // Europhys. Lett. 1991. V. 15, N 6. P. 603-607.

  8. Bhatnagar P.L., Gross E.P., Krook M.K. A model for collision process in gases.I. Small amplitude process in charged and neutral one-component system // Phys. Rev. 1954. V. 94, N 3. P. 511-525.

  9. Kupershtokh A.L. Calculations of the action of electric forces in the lattice Boltzmann equation method using the difference of equilibrium distribution functions // Доклады VII Межд. научн. конф. "Современные проблемы электрофизики и электрогидродинамики жидкостей", Санкт-Петербург, 2003, с. 152-155.

  10. Kupershtokh A.L. New method of incorporating a body force term into the lattice Boltzmann equation // Proc. of the 5th International EHD Workshop, Poitiers, France, 2004, pp. 241-246.

  11. Kupershtokh, A.L. (2004). "Incorporating a body force term into the lattice Boltzmann equation", Vestnik NGU (Quart.J. of Novosibirsk State Univ.), Series: Math., Mech. and Informatics, Vol. 4, No. 2, pp. 75-96.

  12. Kupershtokh A.L. Criterion of numerical instability of liquid state in LBE simulations // Computers and Mathematics with Applications, 2010. V. 59, N 7. P. 2236-2245.

  13. Ginzburg I., Adler P.M. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model // J. Phys. II France. 1994. V. 4. N 2. P. 191-214.

  14. Shan X., Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components // Phys. Rev.E. 1993. V. 47, N 3. P. 1815-1819.

  15. Qian Y.H., Chen S. Finite size effect in lattice-BGK models // International Journal of Modern Physics C. 1997. Vol. 8, N 4. P. 763-771.

  16. Zhang R., Chen H. Lattice Boltzmann method for simulations of liquid-vapor thermal flows // Phys. Rev.E. 2003. V. 67, N 6. P. 066711.

  17. Kupershtokh, A.L. (2005). "Simulation of flows with liquid-vapor interfaces by the lattice Boltzmann method", Vestnik NGU (Quart.J. of Novosibirsk State Univ.), Series: Math., Mech. and Informatics, Vol. 5, No. 3, pp. 29-42.

  18. Kupershtokh A.L., Karpov D.I., Medvedev D.A., Stamatelatos C.P., Charalambakos V.P., Pyrgioti E.C., Agoris D.P., Stochastic models of partial discharge activity in solid and liquid dielectrics // IET Science, Measurement and Technology. 2007. V. 1, N 6. P. 303-311.

  19. Kupershtokh A.L., Medvedev D.A., Karpov D.I. On equations of state in a lattice Boltzmann method // Computers and Mathematics with Applications, 2009. Vol. 58, N 5. P. 965-974.

  20. Kupershtokh, A.L. (2011). "A lattice Boltzmann equation method for real fluids with the equation of state known in tabular form only in regions of liquid and vapor phases", Computers and Mathematics with Applications, Vol. 61, No. 12, pp. 3537-3548.

  21. Li W., Wei X., Kaufman A. Implementing lattice Boltzmann computation on graphics hardware // Visual Computer. 2003. V. 19. P. 444-456.

  22. Tölke J., Krafczyk M. TeraFLOP computing on a desktop PC with GPU for 3D CFD // International Journal of Computational Fluid Dynamics. 2008. V. 22, N 7. P. 443-456.

  23. Janßen C., Krafczyk M. Free surface flow simulations on GPGPU using the LBM // Computers and Mathematics with Applications, 2011. V. 61, N 12. P. 3549-3563.

  24. Obrecht C., Kuznik F., Tourancheau B., Roux J.-J., Multi-GPU implementation of the lattice Boltzmann method // Computers and Mathematics with Applications. 2011. In press., doi: 10.1016/j.camwa. 2011.02.020.



© SPIC "Kappa", LLC 2009-2016