2011 2(7)

Back to table of content

   Short abstract

 

Pages:

108 - 111

Language:

RU

Ref.:

10


Click to get extended abstract


Download paper: [RU]

2011_2(7)_18.pdf

 

 

A NUMERICAL SIMULATION OF UNSTEADY VORTEX PHENOMENA

Dekterev A.A., Dekterev A.A., Dekterev D.A., Shtork S.I.

Institute of Thermophysics SB RAS, Novosibirsk, Russia


Citation:

Dekterev, A.A., Dekterev, A.A., Dekterev, D.A. and Shtork, S.I., (2011) A numerical simulation of unsteady vortex phenomena, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(7), PP. 108 - 111.


Keywords:

swirled flows; precession of the vortex core; DES simulation


Abstracts:

The paper is devoted to a numerical simulation of unsteady flow regimes in the model of vortex chamber with the formation of the precessing vortex core phenomenon (PVC). The possibility of predicting the precession frequency allows avoiding undesired operation modes of some technical applications. Calculated geometry of the camera is identical to the geometry of the experimental set-up, which is constructed in the Institute of Thermophysics in Novosibirsk. The geometry allows to study the problem of vortex formation in the canonical conditions. During the work it was found that using of detached eddy simulation (DES) method allows to predict the behavior of high swirl number flows with sufficiently high quality. The simulation results are compared with the number of experimental data including the PIV data.


References:

  1. Gupta, A., Lilley, D., Syred, N. (1987). Zakruchenye potoki [Swirl flows], World, Moscow, USSR.

  2. Alekseenko S.V., Kuibin P.A., Okulov V.L. Theory of concentrated vortices: an introduction. Springer-Verlag, Berlin, Heidelberg.

  3. Anacleto P.M., Fernandes E.C., Heitor M.V. and Shtork S.I. Swirl flow structure and flame characteristics in a model lean premixed combustor // Combust. Sc. Technol. - 2003. -V. 175, N 8, pp. 1369 - 1388.

  4. Shtork S.I., Vieira N.F., Fernandes E.C. On the identification of helical instabilities in a reacting swirling flow // Fuel, 2008, Vol. 87 (10-11), pp. 2314-2321.

  5. Алексеенко С.В, Окулов В.Л. Закрученные потоки в технических приложениях (обзор) // Теплофизика и аэромеханика.- 1996.- Т. 3, №2. -С. 101-138.

  6. Syred N. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems // Prog. Energy Combust. Sc. - 2006. - Vol. 32(2). - P. 93-161.

  7. Ciocan G.D., Iliescu M.S., Vu T.C., Nennemann B., Avellan F. Experimental study and numerical simulation of the FLINDT draft tube rotating vortex // J. Fluids Eng., 2007, Vol. 129, pp. 146-158.

  8. Derksen J., Van den Akker H.E.A. Simulation of vortex core precession in a reverse-flow cyclone // AIChEJ. 2000. - 46(7): 1317-1331.

  9. Сентябов А.В., Гаврилов А.А., Дектерев А.А. Исследование моделей турбулентности для расчета закрученных течений. Теплофизика и аэромеханика. №1, 2011, с. 81-93.

  10. Jeong J., Hussain F. On the identification of a vortex // J. Fluid Mech. - 1995. - 285: -pp. 69-94.

 

 
     

© SPIC "Kappa", LLC 2009-2016