2010 2(4)

Back to table of content

   Short abstract

 

Pages:

159 - 164

Language:

RU

Ref.:

11


Click to get extended abstract


Download paper: [RU]

2010_2(4)_31.pdf

 

 

MATHEMATICAL MODELLING OF MECHANICS OF MULTIPHASE ENVIRONMENTS AT INTERPHASE INTERACTION

Nekrasova E.I.1, Kholpanov L.P.1, Nekrasov A.K.1

1 Electrostal politechnical Institute, Electrostal, Russia


Citation:

Nekrasova, E.I., Kholpanov, L.P. and Nekrasov, A.K., (2010) Mathematical modelling of mechanics of multiphase environments at interphase interaction, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(4), PP. 159 - 164.


Keywords:

hydrodynamics; heat exchange; multiphase environments; disperse streams; a method of final differences


Abstracts:

A destruction of metallurgical installations lining under thermal shock was investigated. For example a periclasse-chromite lining of DH-degasser was taken. Two types of thermal shock were considered – during heating and cooling of the lining. It was determinated, that these two types of thermal shock cause a different character of damage. A dynamic heat field and thermal stress of the lining during the thermal shock were cal-culated with finite elements method. Also, the size of lining damages was calculated. The most dangerous moments for the lining destruction were found. The calculating results are in good correspondence with investigation of damage sizes, measured after finish of installation usage.


References:

  1. Райст П. Аэрозоли. Введение в теорию: Пер. с англ. - М.: Мир, 1987. - 280 с.

  2. Nigmatulin, R.I. (1978). Osnovy mekhaniki geterogennykh sred [Foundations of mechanics of heterogeneous media ], Nauka, Moskow, USSR.

  3. Е.С.Асмолов. Численное моделирование осаждения разреженной суспензии в контейнере // Изв. РАН. МЖГ. 2007, №3. С. 84-93.

  4. Volkov, K.N. and Emelyanov, V.N. (2008). Techeniya gaza s chasticami [Particle Laden Flows], Fizmatlit, Moskow, Russia.

  5. Kholpanov L.P., Ismailov B.R., Vlasak P. Modelling of Multiphase Flow Containing Bubles, Drops and solid Particles // Eng. Mech., 2005, Vol. 12, No. 6. - Р. 1-11.

  6. Kholpanov, L.P. and Ibyatov, R.I. (2005). Matematicheskoe modelirovanie dinamiki dispersnoy fazy [Mathematical modeling of dispersed phase dynamics] // Theor. Found. of Chem. Eng., vol. 39, №2, pp.206-215

  7. Л.П.Холпанов, Е.И.Некрасова, А.К.Некрасов. Математическое моделирование динамики дисперсной фазы при свободной гравитационной конвекции вязкой несжимаемой жидкости в квадратной полости // ИФЖ. 2008. Т. 81, № 1. С.81-89.

  8. Andreev, V.Л., Gaponenko, U.A., Goncharova, O.N. and Pukhnachev, V.V. (2008). Sovremennye matematicheskie modeli konvekcii [Novel mathematical models of convection], Fizmatlit, Moskow, Russia.

  9. P.G.Saffman. He Setting Speed of Free and Fixed Suspensions // Studies in Applied Mathematics. 1973. Vol. LII, №2. P. 115-127.

  10. Полежаев В.И., Бунэ А.В., Верезуб Н.И. и др. Математическое моделирование конвективного тепломассообмена на основе уравнений Навье - Стокса. - М.: Наука, 1987. - 272 с.

  11. G.De.Vahl Davis. Natural convection of air in a square cavity: a bench mark numerical solution // Int.J. for Numerical Methods in Fluids. 1983. Vol. 3, №3. P. 249-264.

 

 
     

© SPIC "Kappa", LLC 2009-2016