2010 2(4)

Back to table of content

   Short abstract



128 - 134





Click to get extended abstract

Download paper: [RU]





Burshteyn A.B., Burshteyn L.K.

Federal University of Pelotas, Capao do Leao, Brazil


Burshteyn, A.B. and Burshteyn, L.K., (2010) An efficient time splitting scheme for nonhydrostatic atmospheric model, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(4), PP. 128 - 134.


atmospheric model; numerical forecast; semi-implicit method; splitting technique


In this study we apply splitting techniques in the context of the semi-implicit approach in order to construct computationally efficient and accurate numerical scheme for large-scale atmospheric dynamics model. Description of the designed numerical algorithm is provided and its properties of accuracy and stability are discussed. Performed numerical experiments with the actual atmospheric data of pressure, temperature and wind showed that the proposed scheme supplies accurate forecast fields for the increased time steps chosen in accordance with the physical requirements. Comparison of the developed scheme with the standard semi-implicit method and more explicit algorithm revealed advantages of the proposed approach.


  1. R.A.Anthes, Y.H.Kuo, E.Y.Hsie, S.Low-Nam, T.W.Bettge. Estimation of skill and uncertainty in regional numerical models.Q. J.R. Meteorol. Soc. 115, 1989, p.763-806.

  2. V.Bandy, R.Sweet. A set of three drivers for BOXMG: a black box multigrid solver. Comm. Appl. Num. Meth. 8, 1992, p.563-571.

  3. A.Bourchtein. Semi-Lagrangian semi-implicit space splitting regional baroclinic atmospheric model. Appl. Numer. Math. 41, 2002, p.307-326.

  4. A.Bourchtein, L.Bourchtein. Semi-Lagrangian semi-implicit time-splitting scheme for a regional model of the atmosphere.J. Comput. Appl. Math., 227, 2009, p.115-125.

  5. D.M.Burridge. A split semi-implicit reformulation of the Bushby-Timpson 10 level model.Q. J.R. Meteorol. Soc. 101, 1975, p.777-792.

  6. M.Cullen. Modelling atmospheric flows. Acta Numerica 16, 2007, p.67-154.

  7. D.Durran Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Springer-Verlag, 1999.

  8. A.Gassmann, H.J.Herzog A consistent time-split numerical scheme applied to the nonhydrostatic compressible equations. Mon. Wea. Rev. 135, 2007, p.20-36.

  9. J.R.Holton. An Introduction to Dynamic Meteorology. Academic Press, 1992.

  10. V.Kadychnikov, V.Losev. Application of the alternating direction implicit method to the numerical regional weather forecast, Meteorology and Hydrology 9, 1991, p.26-33.

  11. E.Kalnay. Atmospheric Modeling, Data Assimilation and Predictability. Campridge University Press, 2002.

  12. L.M.Leslie, R.J.Purser. Three-dimensional mass-conservating semi-Lagrangian scheme employing forward trajectories. Mon. Wea. Rev. 123, 1995, p.2551-2566.

  13. W.C.Skamarock, J.B.Klemp. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications.J.Comp.Phys. 227, 2008, p.3465-3485

  14. A.Staniforth, N.Wood. Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model.J.Comp.Phys. 227, 2008, p.3445-3464.

  15. J.Steppeler, R.Hess, U.Schattler, L.Bonaventura. Review of numerical methods for nonhydrostatic weather prediction models. Meteorol. Atmos. Phys. 82, 2003, p.287-301.

  16. D.L.Williamson, C.Temperton. Normal mode initialization for a multilevel grid-point model. Part II: nonlinear aspects. Mon. Wea. Rev. 109, 1981, p.744-757.



© SPIC "Kappa", LLC 2009-2016