2010 2(4)

Back to table of content

   Short abstract



112 - 116





Click to get extended abstract

Download paper: [RU]





Semenov A.A., Zaytsev D.V., Kabov O.A.

Institute of Thermophysics SB RAS, Novosibirsk, Russia


Semenov, A.A., Zaytsev, D.V. and Kabov, O.A., (2010) The effect of gravity and viscosity on thermocapillary rupture of a falling liquid film, Modern Science: Researches, Ideas, Results, Technologies, Iss. #2(4), PP. 112 - 116.


multiphase flows; heat- and mass-transfer; thermocapillary rupture; film flows


Rupture of a subcooled liquid film flowing over an inclined plate with a 150×150 mm heater is studied for a wide range of liquid viscosity (dynamic viscosity µ=(0.91-17.2)×10-3 Pa⋅s) and plate inclination angle with respect to the horizon (Θ =3–90 deg). The main governing parameters of the experiment and their respective values are: Reynolds number Re=0.15–54, heat flux q=0–2.24 W/cm2. The effect of the heat flux on the film flow leads to the formation of periodically flowing rivulets and thin film between them. As the heat flux grows the film thickness between rivulets gradually decreases, and, upon reaching a certain threshold heat flux, qidp, the film ruptures in the area between the rivulets. The threshold heat flux increases with the flow rate of liquid and with the liquid viscosity, while the plate inclination angle has little effect on qidp. Criterion Kp, which is traditionally used in the literature to predict thermocapillary film rupture, was found to poorly generalize data for high viscous liquids (ethylene glycol, and aqueous solutions of glycerol) and also data for Θ≤ 45 deg. The criterion Kp was modified by taking into account characteristic critical film thickness for film rupture under isothermal conditions (no heating), deduced from existing theoretical models. The modified criterion has allowed to successfully generalize data for whole ranges of µ, Re, Θ and q, studied.


  1. I. Gimbutis, Heat Transfer to a Falling Fluid Film, Mokslas, Vilnius, 1988.

  2. Кабов О.А., Теплоотдача от нагревателя с малым линейным размером к свободно стекающей пленке жидкости // Труды Первой Российской национальной конференции по теплообмену.- М.: Издательство МЭИ.- 1994, Т.6.- С. 90-95.

  3. Chinnov E.A., Kabov O.A. Muzykantov A.V. and Zaitsev D.V., 2001, Influence of plate inclination on heat transfer and breakdown of locally heated flowing liquid film // Intern.J. Heat and Technology. - Vol. 19. No 1. - P. 1-14.

  4. Chinnov E.A., Kabov O.A. Marchuk I.V. and Zaitsev D.V., 2002, Heat transfer and breakdown of subcooled falling water film on a vertical middle size heater // Intern.J. Heat and Technology. - Vol. 20, No 1. - P. 69-78.

  5. Zaitsev D.V. and Kabov O.A. Study of the thermocapillary effect on a wavy falling film using a fiber optical thickness probe.//Experiments in Fluids, Vol39, No4, pp.712-721, 2005.

  6. Кабов О.А., 2000, Разрыв пленки жидкости, стекающей по поверхности с локальным источником тепла // Теплофизика и аэромеханика. - Т.7, №4. - С. 537-545.

  7. Hsu Y.Y., Simon F.F., Lad J.F., 1963, Destruction of a Thin Liquid Film Flowing Over a Heating Surface // NASA Report E 2144.

  8. Гогонин И.И., Дорохов А.Р., Бочагов В.Н., 1977, К вопросу образования "сухих пятен" в стекающих тонких пленках жидкости // Изв. СО АН СССР.- Вып. 3, № 13.- С. 46 - 51.

  9. Fujita T. and Ueda T., 1978, Heat Transfer to Falling Liquid Films and Film Breakdown-I (Subcooled Liquid Films) // Int.J. Heat Mass Transfer.- Vol. 21.- P. 97-108.

  10. Ганчев Б.Г., Боков А.Е., 1980, Исследование термокапиллярной устойчивости при гравитационном стекании пленки жидкости // ИФЖ. - Т. 39, № 4. - С. 581-591.

  11. Hartley D.E., Murgatroyd W. Criteria for the Break-Up of Thin Liquid Layers Flowing Isothermally Over Solid Surfaces, Int.J. Heat Mass Transfer. 1964. V. 7. P. 1003.



© SPIC "Kappa", LLC 2009-2016